summaryrefslogtreecommitdiff
path: root/src/Persistence_representations/include/gudhi/Sliced_Wasserstein.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/Persistence_representations/include/gudhi/Sliced_Wasserstein.h')
-rw-r--r--src/Persistence_representations/include/gudhi/Sliced_Wasserstein.h340
1 files changed, 340 insertions, 0 deletions
diff --git a/src/Persistence_representations/include/gudhi/Sliced_Wasserstein.h b/src/Persistence_representations/include/gudhi/Sliced_Wasserstein.h
new file mode 100644
index 00000000..8c92ab54
--- /dev/null
+++ b/src/Persistence_representations/include/gudhi/Sliced_Wasserstein.h
@@ -0,0 +1,340 @@
+/* This file is part of the Gudhi Library. The Gudhi library
+ * (Geometric Understanding in Higher Dimensions) is a generic C++
+ * library for computational topology.
+ *
+ * Author(s): Mathieu Carriere
+ *
+ * Copyright (C) 2018 INRIA (France)
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#ifndef SLICED_WASSERSTEIN_H_
+#define SLICED_WASSERSTEIN_H_
+
+// gudhi include
+#include <gudhi/read_persistence_from_file.h>
+#include <gudhi/common_persistence_representations.h>
+#include <gudhi/Debug_utils.h>
+
+// standard include
+#include <cmath>
+#include <iostream>
+#include <vector>
+#include <limits>
+#include <fstream>
+#include <sstream>
+#include <algorithm>
+#include <string>
+#include <utility>
+#include <functional>
+
+namespace Gudhi {
+namespace Persistence_representations {
+
+/**
+ * \class Sliced_Wasserstein gudhi/Sliced_Wasserstein.h
+ * \brief A class implementing the Sliced Wasserstein kernel.
+ *
+ * \ingroup Persistence_representations
+ *
+ * \details
+ * The Sliced Wasserstein kernel is defined as a Gaussian-like kernel between persistence diagrams, where the distance used for
+ * comparison is the Sliced Wasserstein distance \f$SW\f$ between persistence diagrams, defined as the integral of the 1-norm
+ * between the sorted projections of the diagrams onto all lines passing through the origin:
+ *
+ * \f$ SW(D_1,D_2)=\int_{\theta\in\mathbb{S}}\,\|\pi_\theta(D_1\cup\pi_\Delta(D_2))-\pi_\theta(D_2\cup\pi_\Delta(D_1))\|_1{\rm d}\theta\f$,
+ *
+ * where \f$\pi_\theta\f$ is the projection onto the line defined with angle \f$\theta\f$ in the unit circle \f$\mathbb{S}\f$,
+ * and \f$\pi_\Delta\f$ is the projection onto the diagonal.
+ * The integral can be either computed exactly in \f$O(n^2{\rm log}(n))\f$ time, where \f$n\f$ is the number of points
+ * in the diagrams, or approximated by sampling \f$N\f$ lines in the circle in \f$O(Nn{\rm log}(n))\f$ time. The Sliced Wasserstein Kernel is then computed as:
+ *
+ * \f$ k(D_1,D_2) = {\rm exp}\left(-\frac{SW(D_1,D_2)}{2\sigma^2}\right).\f$
+ *
+ * For more details, please see \cite pmlr-v70-carriere17a .
+ *
+**/
+
+class Sliced_Wasserstein {
+
+ protected:
+ Persistence_diagram diagram;
+ int approx;
+ double sigma;
+ std::vector<std::vector<double> > projections, projections_diagonal;
+
+ public:
+
+ void build_rep(){
+
+ if(approx > 0){
+
+ double step = pi/this->approx;
+ int n = diagram.size();
+
+ for (int i = 0; i < this->approx; i++){
+ std::vector<double> l,l_diag;
+ for (int j = 0; j < n; j++){
+
+ double px = diagram[j].first; double py = diagram[j].second;
+ double proj_diag = (px+py)/2;
+
+ l.push_back ( px * cos(-pi/2+i*step) + py * sin(-pi/2+i*step) );
+ l_diag.push_back ( proj_diag * cos(-pi/2+i*step) + proj_diag * sin(-pi/2+i*step) );
+ }
+
+ std::sort(l.begin(), l.end()); std::sort(l_diag.begin(), l_diag.end());
+ projections.push_back(l); projections_diagonal.push_back(l_diag);
+
+ }
+
+ }
+
+ }
+
+ /** \brief Sliced Wasserstein kernel constructor.
+ * \ingroup Sliced_Wasserstein
+ *
+ * @param[in] _diagram persistence diagram.
+ * @param[in] _sigma bandwidth parameter.
+ * @param[in] _approx number of directions used to approximate the integral in the Sliced Wasserstein distance, set to -1 for exact computation.
+ *
+ */
+ Sliced_Wasserstein(const Persistence_diagram & _diagram, double _sigma = 1.0, int _approx = 100){diagram = _diagram; approx = _approx; sigma = _sigma; build_rep();}
+
+ // **********************************
+ // Utils.
+ // **********************************
+
+ // Compute the angle formed by two points of a PD
+ double compute_angle(const Persistence_diagram & diag, int i, int j) const {
+ std::pair<double,double> vect; double x1,y1, x2,y2;
+ x1 = diag[i].first; y1 = diag[i].second;
+ x2 = diag[j].first; y2 = diag[j].second;
+ if (y1 - y2 > 0){
+ vect.first = y1 - y2;
+ vect.second = x2 - x1;}
+ else{
+ if(y1 - y2 < 0){
+ vect.first = y2 - y1;
+ vect.second = x1 - x2;
+ }
+ else{
+ vect.first = 0;
+ vect.second = abs(x1 - x2);}
+ }
+ double norm = std::sqrt(vect.first*vect.first + vect.second*vect.second);
+ return asin(vect.second/norm);
+ }
+
+ // Compute the integral of |cos()| between alpha and beta, valid only if alpha is in [-pi,pi] and beta-alpha is in [0,pi]
+ double compute_int_cos(double alpha, double beta) const {
+ double res = 0;
+ if (alpha >= 0 && alpha <= pi){
+ if (cos(alpha) >= 0){
+ if(pi/2 <= beta){res = 2-sin(alpha)-sin(beta);}
+ else{res = sin(beta)-sin(alpha);}
+ }
+ else{
+ if(1.5*pi <= beta){res = 2+sin(alpha)+sin(beta);}
+ else{res = sin(alpha)-sin(beta);}
+ }
+ }
+ if (alpha >= -pi && alpha <= 0){
+ if (cos(alpha) <= 0){
+ if(-pi/2 <= beta){res = 2+sin(alpha)+sin(beta);}
+ else{res = sin(alpha)-sin(beta);}
+ }
+ else{
+ if(pi/2 <= beta){res = 2-sin(alpha)-sin(beta);}
+ else{res = sin(beta)-sin(alpha);}
+ }
+ }
+ return res;
+ }
+
+ double compute_int(double theta1, double theta2, int p, int q, const Persistence_diagram & diag1, const Persistence_diagram & diag2) const {
+ double norm = std::sqrt( (diag1[p].first-diag2[q].first)*(diag1[p].first-diag2[q].first) + (diag1[p].second-diag2[q].second)*(diag1[p].second-diag2[q].second) );
+ double angle1;
+ if (diag1[p].first > diag2[q].first)
+ angle1 = theta1 - asin( (diag1[p].second-diag2[q].second)/norm );
+ else
+ angle1 = theta1 - asin( (diag2[q].second-diag1[p].second)/norm );
+ double angle2 = angle1 + theta2 - theta1;
+ double integral = compute_int_cos(angle1,angle2);
+ return norm*integral;
+ }
+
+
+
+
+ // **********************************
+ // Scalar product + distance.
+ // **********************************
+
+ /** \brief Evaluation of the Sliced Wasserstein Distance between a pair of diagrams.
+ * \ingroup Sliced_Wasserstein
+ *
+ * @pre approx attribute needs to be the same for both instances.
+ * @param[in] second other instance of class Sliced_Wasserstein.
+ *
+ *
+ */
+ double compute_sliced_wasserstein_distance(const Sliced_Wasserstein & second) const {
+
+ GUDHI_CHECK(this->approx != second.approx, std::invalid_argument("Error: different approx values for representations"));
+
+ Persistence_diagram diagram1 = this->diagram; Persistence_diagram diagram2 = second.diagram; double sw = 0;
+
+ if(this->approx == -1){
+
+ // Add projections onto diagonal.
+ int n1, n2; n1 = diagram1.size(); n2 = diagram2.size(); double max_ordinate = std::numeric_limits<double>::lowest();
+ for (int i = 0; i < n2; i++){
+ max_ordinate = std::max(max_ordinate, diagram2[i].second);
+ diagram1.emplace_back( (diagram2[i].first+diagram2[i].second)/2, (diagram2[i].first+diagram2[i].second)/2 );
+ }
+ for (int i = 0; i < n1; i++){
+ max_ordinate = std::max(max_ordinate, diagram1[i].second);
+ diagram2.emplace_back( (diagram1[i].first+diagram1[i].second)/2, (diagram1[i].first+diagram1[i].second)/2 );
+ }
+ int num_pts_dgm = diagram1.size();
+
+ // Slightly perturb the points so that the PDs are in generic positions.
+ int mag = 0; while(max_ordinate > 10){mag++; max_ordinate/=10;}
+ double thresh = pow(10,-5+mag);
+ srand(time(NULL));
+ for (int i = 0; i < num_pts_dgm; i++){
+ diagram1[i].first += thresh*(1.0-2.0*rand()/RAND_MAX); diagram1[i].second += thresh*(1.0-2.0*rand()/RAND_MAX);
+ diagram2[i].first += thresh*(1.0-2.0*rand()/RAND_MAX); diagram2[i].second += thresh*(1.0-2.0*rand()/RAND_MAX);
+ }
+
+ // Compute all angles in both PDs.
+ std::vector<std::pair<double, std::pair<int,int> > > angles1, angles2;
+ for (int i = 0; i < num_pts_dgm; i++){
+ for (int j = i+1; j < num_pts_dgm; j++){
+ double theta1 = compute_angle(diagram1,i,j); double theta2 = compute_angle(diagram2,i,j);
+ angles1.emplace_back(theta1, std::pair<int,int>(i,j));
+ angles2.emplace_back(theta2, std::pair<int,int>(i,j));
+ }
+ }
+
+ // Sort angles.
+ std::sort(angles1.begin(), angles1.end(), [=](const std::pair<double, std::pair<int,int> >& p1, const std::pair<double, std::pair<int,int> >& p2){return (p1.first < p2.first);});
+ std::sort(angles2.begin(), angles2.end(), [=](const std::pair<double, std::pair<int,int> >& p1, const std::pair<double, std::pair<int,int> >& p2){return (p1.first < p2.first);});
+
+ // Initialize orders of the points of both PDs (given by ordinates when theta = -pi/2).
+ std::vector<int> orderp1, orderp2;
+ for (int i = 0; i < num_pts_dgm; i++){ orderp1.push_back(i); orderp2.push_back(i); }
+ std::sort( orderp1.begin(), orderp1.end(), [=](int i, int j){ if(diagram1[i].second != diagram1[j].second) return (diagram1[i].second < diagram1[j].second); else return (diagram1[i].first > diagram1[j].first); } );
+ std::sort( orderp2.begin(), orderp2.end(), [=](int i, int j){ if(diagram2[i].second != diagram2[j].second) return (diagram2[i].second < diagram2[j].second); else return (diagram2[i].first > diagram2[j].first); } );
+
+ // Find the inverses of the orders.
+ std::vector<int> order1(num_pts_dgm); std::vector<int> order2(num_pts_dgm);
+ for(int i = 0; i < num_pts_dgm; i++) for (int j = 0; j < num_pts_dgm; j++) if(orderp1[j] == i){ order1[i] = j; break; }
+ for(int i = 0; i < num_pts_dgm; i++) for (int j = 0; j < num_pts_dgm; j++) if(orderp2[j] == i){ order2[i] = j; break; }
+
+ // Record all inversions of points in the orders as theta varies along the positive half-disk.
+ std::vector<std::vector<std::pair<int,double> > > anglePerm1(num_pts_dgm);
+ std::vector<std::vector<std::pair<int,double> > > anglePerm2(num_pts_dgm);
+
+ int m1 = angles1.size();
+ for (int i = 0; i < m1; i++){
+ double theta = angles1[i].first; int p = angles1[i].second.first; int q = angles1[i].second.second;
+ anglePerm1[order1[p]].emplace_back(p,theta);
+ anglePerm1[order1[q]].emplace_back(q,theta);
+ int a = order1[p]; int b = order1[q]; order1[p] = b; order1[q] = a;
+ }
+
+ int m2 = angles2.size();
+ for (int i = 0; i < m2; i++){
+ double theta = angles2[i].first; int p = angles2[i].second.first; int q = angles2[i].second.second;
+ anglePerm2[order2[p]].emplace_back(p,theta);
+ anglePerm2[order2[q]].emplace_back(q,theta);
+ int a = order2[p]; int b = order2[q]; order2[p] = b; order2[q] = a;
+ }
+
+ for (int i = 0; i < num_pts_dgm; i++){
+ anglePerm1[order1[i]].emplace_back(i,pi/2);
+ anglePerm2[order2[i]].emplace_back(i,pi/2);
+ }
+
+ // Compute the SW distance with the list of inversions.
+ for (int i = 0; i < num_pts_dgm; i++){
+ std::vector<std::pair<int,double> > u,v; u = anglePerm1[i]; v = anglePerm2[i];
+ double theta1, theta2; theta1 = -pi/2;
+ unsigned int ku, kv; ku = 0; kv = 0; theta2 = std::min(u[ku].second,v[kv].second);
+ while(theta1 != pi/2){
+ if(diagram1[u[ku].first].first != diagram2[v[kv].first].first || diagram1[u[ku].first].second != diagram2[v[kv].first].second)
+ if(theta1 != theta2)
+ sw += compute_int(theta1, theta2, u[ku].first, v[kv].first, diagram1, diagram2);
+ theta1 = theta2;
+ if ( (theta2 == u[ku].second) && ku < u.size()-1 ) ku++;
+ if ( (theta2 == v[kv].second) && kv < v.size()-1 ) kv++;
+ theta2 = std::min(u[ku].second, v[kv].second);
+ }
+ }
+ }
+
+
+ else{
+
+ double step = pi/this->approx;
+ for (int i = 0; i < this->approx; i++){
+
+ std::vector<double> v1; std::vector<double> l1 = this->projections[i]; std::vector<double> l1bis = second.projections_diagonal[i]; std::merge(l1.begin(), l1.end(), l1bis.begin(), l1bis.end(), std::back_inserter(v1));
+ std::vector<double> v2; std::vector<double> l2 = second.projections[i]; std::vector<double> l2bis = this->projections_diagonal[i]; std::merge(l2.begin(), l2.end(), l2bis.begin(), l2bis.end(), std::back_inserter(v2));
+ int n = v1.size(); double f = 0;
+ for (int j = 0; j < n; j++) f += std::abs(v1[j] - v2[j]);
+ sw += f*step;
+
+ }
+ }
+
+ return sw/pi;
+ }
+
+ /** \brief Evaluation of the kernel on a pair of diagrams.
+ * \ingroup Sliced_Wasserstein
+ *
+ * @pre approx and sigma attributes need to be the same for both instances.
+ * @param[in] second other instance of class Sliced_Wasserstein.
+ *
+ */
+ double compute_scalar_product(const Sliced_Wasserstein & second) const {
+ GUDHI_CHECK(this->sigma != second.sigma, std::invalid_argument("Error: different sigma values for representations"));
+ return std::exp(-compute_sliced_wasserstein_distance(second)/(2*this->sigma*this->sigma));
+ }
+
+ /** \brief Evaluation of the distance between images of diagrams in the Hilbert space of the kernel.
+ * \ingroup Sliced_Wasserstein
+ *
+ * @pre approx and sigma attributes need to be the same for both instances.
+ * @param[in] second other instance of class Sliced_Wasserstein.
+ *
+ */
+ double distance(const Sliced_Wasserstein & second) const {
+ GUDHI_CHECK(this->sigma != second.sigma, std::invalid_argument("Error: different sigma values for representations"));
+ return std::pow(this->compute_scalar_product(*this) + second.compute_scalar_product(second)-2*this->compute_scalar_product(second), 0.5);
+ }
+
+
+
+
+}; // class Sliced_Wasserstein
+} // namespace Persistence_representations
+} // namespace Gudhi
+
+#endif // SLICED_WASSERSTEIN_H_