summaryrefslogtreecommitdiff
path: root/src/Persistence_representations/include
diff options
context:
space:
mode:
Diffstat (limited to 'src/Persistence_representations/include')
-rw-r--r--src/Persistence_representations/include/gudhi/Persistence_heat_maps_exact.h125
-rw-r--r--src/Persistence_representations/include/gudhi/Persistence_landscape_on_grid_exact.h107
-rw-r--r--src/Persistence_representations/include/gudhi/Persistence_weighted_gaussian.h181
-rw-r--r--src/Persistence_representations/include/gudhi/Sliced_Wasserstein.h340
-rw-r--r--src/Persistence_representations/include/gudhi/Weight_functions.h81
-rw-r--r--src/Persistence_representations/include/gudhi/common_persistence_representations.h26
6 files changed, 853 insertions, 7 deletions
diff --git a/src/Persistence_representations/include/gudhi/Persistence_heat_maps_exact.h b/src/Persistence_representations/include/gudhi/Persistence_heat_maps_exact.h
new file mode 100644
index 00000000..7c5b2fdc
--- /dev/null
+++ b/src/Persistence_representations/include/gudhi/Persistence_heat_maps_exact.h
@@ -0,0 +1,125 @@
+/* This file is part of the Gudhi Library. The Gudhi library
+ * (Geometric Understanding in Higher Dimensions) is a generic C++
+ * library for computational topology.
+ *
+ * Author(s): Mathieu Carriere
+ *
+ * Copyright (C) 2018 INRIA (France)
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#ifndef PERSISTENCE_HEAT_MAPS_EXACT_H_
+#define PERSISTENCE_HEAT_MAPS_EXACT_H_
+
+// gudhi include
+#include <gudhi/read_persistence_from_file.h>
+#include <gudhi/common_persistence_representations.h>
+#include <gudhi/Weight_functions.h>
+#include <gudhi/Debug_utils.h>
+
+// standard include
+#include <cmath>
+#include <iostream>
+#include <vector>
+#include <limits>
+#include <fstream>
+#include <sstream>
+#include <algorithm>
+#include <string>
+#include <utility>
+#include <functional>
+
+namespace Gudhi {
+namespace Persistence_representations {
+
+/**
+ * \class Persistence_heat_maps_exact gudhi/Persistence_heat_maps_exact.h
+ * \brief A class implementing exact persistence heat maps.
+ *
+ * \ingroup Persistence_representations
+ *
+ * \details
+ *
+ * In this class, we propose a way to approximate persistence heat maps, or persistence surfaces, by centering weighted Gaussians on each point of the persistence diagram, and evaluating these (exact) weighted Gaussian functions
+ * on the pixels of a 2D grid. Note that this scheme is different from the one proposed in Persistence_heat_maps, which first maps the points of the diagram to a 2D grid, and then evaluates the (approximate) weighted Gaussian functions.
+ * Hence, the difference is that we do not modify the diagram in this implementation, but the code can be slower to run.
+**/
+
+class Persistence_heat_maps_exact {
+
+ protected:
+ Persistence_diagram diagram;
+ int res_x, res_y;
+ double min_x, max_x, min_y, max_y;
+ Weight weight;
+ double sigma;
+
+ public:
+
+ /** \brief Persistence_heat_maps_exact constructor.
+ * \ingroup Persistence_heat_maps_exact
+ *
+ * @param[in] _diagram persistence diagram.
+ * @param[in] _min_x minimum value of pixel abscissa.
+ * @param[in] _max_x maximum value of pixel abscissa.
+ * @param[in] _res_x number of pixels for the x-direction.
+ * @param[in] _min_y minimum value of pixel ordinate.
+ * @param[in] _max_y maximum value of pixel ordinate.
+ * @param[in] _res_y number of pixels for the y-direction.
+ * @param[in] _weight weight function for the Gaussians.
+ * @param[in] _sigma bandwidth parameter for the Gaussians.
+ *
+ */
+ Persistence_heat_maps_exact(const Persistence_diagram & _diagram, double _min_x = 0.0, double _max_x = 1.0, int _res_x = 10, double _min_y = 0.0, double _max_y = 1.0, int _res_y = 10, const Weight & _weight = arctan_weight(1,1), double _sigma = 1.0){
+ diagram = _diagram; min_x = _min_x; max_x = _max_x; res_x = _res_x; min_y = _min_y; max_y = _max_y; res_y = _res_y, weight = _weight; sigma = _sigma;
+ }
+
+ /** \brief Computes the persistence image of a diagram.
+ * \ingroup Persistence_heat_maps_exact
+ *
+ */
+ std::vector<std::vector<double> > vectorize() const {
+ std::vector<std::vector<double> > im; for(int i = 0; i < res_y; i++) im.emplace_back();
+ double step_x = (max_x - min_x)/(res_x - 1); double step_y = (max_y - min_y)/(res_y - 1);
+
+ int num_pts = diagram.size();
+
+ for(int i = 0; i < res_y; i++){
+ double y = min_y + i*step_y;
+ for(int j = 0; j < res_x; j++){
+ double x = min_x + j*step_x;
+
+ double pixel_value = 0;
+ for(int k = 0; k < num_pts; k++){
+ double px = diagram[k].first; double py = diagram[k].second;
+ pixel_value += weight(std::pair<double,double>(px,py)) * std::exp( -((x-px)*(x-px) + (y-(py-px))*(y-(py-px))) / (2*sigma*sigma) ) / (sigma*std::sqrt(2*pi));
+ }
+ im[i].push_back(pixel_value);
+
+ }
+ }
+
+ return im;
+
+ }
+
+
+
+
+}; // class Persistence_heat_maps_exact
+} // namespace Persistence_representations
+} // namespace Gudhi
+
+#endif // PERSISTENCE_HEAT_MAPS_EXACT_H_
diff --git a/src/Persistence_representations/include/gudhi/Persistence_landscape_on_grid_exact.h b/src/Persistence_representations/include/gudhi/Persistence_landscape_on_grid_exact.h
new file mode 100644
index 00000000..25f71e27
--- /dev/null
+++ b/src/Persistence_representations/include/gudhi/Persistence_landscape_on_grid_exact.h
@@ -0,0 +1,107 @@
+/* This file is part of the Gudhi Library. The Gudhi library
+ * (Geometric Understanding in Higher Dimensions) is a generic C++
+ * library for computational topology.
+ *
+ * Author(s): Mathieu Carriere
+ *
+ * Copyright (C) 2018 INRIA (France)
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#ifndef LANDSCAPE_H_
+#define LANDSCAPE_H_
+
+// gudhi include
+#include <gudhi/read_persistence_from_file.h>
+#include <gudhi/common_persistence_representations.h>
+#include <gudhi/Debug_utils.h>
+
+// standard include
+#include <cmath>
+#include <iostream>
+#include <vector>
+#include <limits>
+#include <fstream>
+#include <sstream>
+#include <algorithm>
+#include <string>
+#include <utility>
+#include <functional>
+
+namespace Gudhi {
+namespace Persistence_representations {
+
+/**
+ * \class Persistence_landscape_on_grid_exact gudhi/Persistence_landscape_on_grid_exact.h
+ * \brief A class implementing exact persistence landscapes by approximating them on a collection of grid points
+ *
+ * \ingroup Persistence_representations
+ *
+ * \details
+ * In this class, we propose a way to approximate landscapes by sampling the x-axis of the persistence diagram and evaluating the (exact) landscape functions on the sample projections onto the diagonal. Note that this is a different approximation scheme
+ * from the one proposed in Persistence_landscape_on_grid, which puts a grid on the diagonal, maps the persistence intervals on this grid and computes the (approximate) landscape functions on the samples.
+ * Hence, the difference is that we do not modify the diagram in this implementation, but the code can be slower to run.
+**/
+
+class Persistence_landscape_on_grid_exact {
+
+ protected:
+ Persistence_diagram diagram;
+ int res_x, nb_ls;
+ double min_x, max_x;
+
+ public:
+
+ /** \brief Persistence_landscape_on_grid_exact constructor.
+ * \ingroup Persistence_landscape_on_grid_exact
+ *
+ * @param[in] _diagram persistence diagram.
+ * @param[in] _nb_ls number of landscape functions.
+ * @param[in] _min_x minimum value of samples.
+ * @param[in] _max_x maximum value of samples.
+ * @param[in] _res_x number of samples.
+ *
+ */
+ Persistence_landscape_on_grid_exact(const Persistence_diagram & _diagram, int _nb_ls = 5, double _min_x = 0.0, double _max_x = 1.0, int _res_x = 10){diagram = _diagram; nb_ls = _nb_ls; min_x = _min_x; max_x = _max_x; res_x = _res_x;}
+
+ /** \brief Computes the landscape approximation of a diagram.
+ * \ingroup Persistence_landscape_on_grid_exact
+ *
+ */
+ std::vector<std::vector<double> > vectorize() const {
+ std::vector<std::vector<double> > ls; for(int i = 0; i < nb_ls; i++) ls.emplace_back();
+ int num_pts = diagram.size(); double step = (max_x - min_x)/res_x;
+
+ for(int i = 0; i < res_x; i++){
+ double x = min_x + i*step; double t = x / std::sqrt(2); std::vector<double> events;
+ for(int j = 0; j < num_pts; j++){
+ double px = diagram[j].first; double py = diagram[j].second;
+ if(t >= px && t <= py){ if(t >= (px+py)/2) events.push_back(std::sqrt(2)*(py-t)); else events.push_back(std::sqrt(2)*(t-px)); }
+ }
+
+ std::sort(events.begin(), events.end(), [](const double & a, const double & b){return a > b;}); int nb_events = events.size();
+ for (int j = 0; j < nb_ls; j++){ if(j < nb_events) ls[j].push_back(events[j]); else ls[j].push_back(0); }
+ }
+ return ls;
+ }
+
+
+
+
+}; // class Persistence_landscape_on_grid_exact
+} // namespace Persistence_representations
+} // namespace Gudhi
+
+#endif // LANDSCAPE_H_
diff --git a/src/Persistence_representations/include/gudhi/Persistence_weighted_gaussian.h b/src/Persistence_representations/include/gudhi/Persistence_weighted_gaussian.h
new file mode 100644
index 00000000..76c43e65
--- /dev/null
+++ b/src/Persistence_representations/include/gudhi/Persistence_weighted_gaussian.h
@@ -0,0 +1,181 @@
+/* This file is part of the Gudhi Library. The Gudhi library
+ * (Geometric Understanding in Higher Dimensions) is a generic C++
+ * library for computational topology.
+ *
+ * Author(s): Mathieu Carriere
+ *
+ * Copyright (C) 2018 INRIA (France)
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#ifndef PERSISTENCE_WEIGHTED_GAUSSIAN_H_
+#define PERSISTENCE_WEIGHTED_GAUSSIAN_H_
+
+// gudhi include
+#include <gudhi/read_persistence_from_file.h>
+#include <gudhi/common_persistence_representations.h>
+#include <gudhi/Weight_functions.h>
+
+// standard include
+#include <cmath>
+#include <iostream>
+#include <vector>
+#include <limits>
+#include <fstream>
+#include <sstream>
+#include <algorithm>
+#include <string>
+#include <utility>
+#include <functional>
+
+namespace Gudhi {
+namespace Persistence_representations {
+/**
+ * \class Persistence_weighted_gaussian gudhi/Persistence_weighted_gaussian.h
+ * \brief A class implementing the Persistence Weighted Gaussian kernel and a specific case thereof called the Persistence Scale Space kernel.
+ *
+ * \ingroup Persistence_representations
+ *
+ * \details
+ * The Persistence Weighted Gaussian kernel is built with Gaussian Kernel Mean Embedding, meaning that each persistence diagram is first
+ * sent to the Hilbert space of a Gaussian kernel with bandwidth parameter \f$\sigma >0\f$ using a weighted mean embedding \f$\Phi\f$:
+ *
+ * \f$ \Phi\,:\,D\,\rightarrow\,\sum_{p\in D}\,w(p)\,{\rm exp}\left(-\frac{\|p-\cdot\|_2^2}{2\sigma^2}\right) \f$,
+ *
+ * Usually, the weight function is chosen to be an arctan function of the distance of the point to the diagonal:
+ * \f$w(p) = {\rm arctan}(C\,|y-x|^\alpha)\f$, for some parameters \f$C,\alpha >0\f$.
+ * Then, their scalar product in this space is computed:
+ *
+ * \f$ k(D_1,D_2)=\langle\Phi(D_1),\Phi(D_2)\rangle
+ * \,=\,\sum_{p\in D_1}\,\sum_{q\in D_2}\,w(p)\,w(q)\,{\rm exp}\left(-\frac{\|p-q\|_2^2}{2\sigma^2}\right).\f$
+ *
+ * Note that one may apply a second Gaussian kernel to their distance in this space and still get a kernel.
+ *
+ * It follows that the computation time is \f$O(n^2)\f$ where \f$n\f$ is the number of points
+ * in the diagrams. This time can be improved by computing approximations of the kernel
+ * with \f$m\f$ Fourier features \cite Rahimi07randomfeatures. In that case, the computation time becomes \f$O(mn)\f$.
+ *
+ * The Persistence Scale Space kernel is a Persistence Weighted Gaussian kernel between modified diagrams:
+ * the symmetric of each point with respect to the diagonal is first added in each diagram, and then the weight function
+ * is set to be +1 if the point is above the diagonal and -1 otherwise.
+ *
+ * For more details, please see \cite Kusano_Fukumizu_Hiraoka_PWGK
+ * and \cite Reininghaus_Huber_ALL_PSSK .
+ *
+**/
+class Persistence_weighted_gaussian{
+
+ protected:
+ Persistence_diagram diagram;
+ Weight weight;
+ double sigma;
+ int approx;
+
+ public:
+
+ /** \brief Persistence Weighted Gaussian kernel constructor.
+ * \ingroup Persistence_weighted_gaussian
+ *
+ * @param[in] _diagram persistence diagram.
+ * @param[in] _sigma bandwidth parameter of the Gaussian kernel used for the Kernel Mean Embedding of the diagrams.
+ * @param[in] _approx number of random Fourier features in case of approximate computation, set to -1 for exact computation.
+ * @param[in] _weight weight function for the points in the diagrams.
+ *
+ */
+ Persistence_weighted_gaussian(const Persistence_diagram & _diagram, double _sigma = 1.0, int _approx = 1000, const Weight & _weight = arctan_weight(1,1)){diagram = _diagram; sigma = _sigma; approx = _approx; weight = _weight;}
+
+
+ // **********************************
+ // Utils.
+ // **********************************
+
+ std::vector<std::pair<double,double> > Fourier_feat(const Persistence_diagram & diag, const std::vector<std::pair<double,double> > & z, const Weight & weight = arctan_weight(1,1)) const {
+ int md = diag.size(); std::vector<std::pair<double,double> > b; int mz = z.size();
+ for(int i = 0; i < mz; i++){
+ double d1 = 0; double d2 = 0; double zx = z[i].first; double zy = z[i].second;
+ for(int j = 0; j < md; j++){
+ double x = diag[j].first; double y = diag[j].second;
+ d1 += weight(diag[j])*cos(x*zx + y*zy);
+ d2 += weight(diag[j])*sin(x*zx + y*zy);
+ }
+ b.emplace_back(d1,d2);
+ }
+ return b;
+ }
+
+ std::vector<std::pair<double,double> > random_Fourier(double sigma, int m = 1000) const {
+ std::normal_distribution<double> distrib(0,1); std::vector<std::pair<double,double> > z; std::random_device rd;
+ for(int i = 0; i < m; i++){
+ std::mt19937 e1(rd()); std::mt19937 e2(rd());
+ double zx = distrib(e1); double zy = distrib(e2);
+ z.emplace_back(zx/sigma,zy/sigma);
+ }
+ return z;
+ }
+
+
+
+ // **********************************
+ // Scalar product + distance.
+ // **********************************
+
+ /** \brief Evaluation of the kernel on a pair of diagrams.
+ * \ingroup Persistence_weighted_gaussian
+ *
+ * @pre sigma, approx and weight attributes need to be the same for both instances.
+ * @param[in] second other instance of class Persistence_weighted_gaussian.
+ *
+ */
+ double compute_scalar_product(const Persistence_weighted_gaussian & second) const {
+
+ GUDHI_CHECK(this->sigma != second.sigma || this->approx != second.approx || this->weight != second.weight, std::invalid_argument("Error: different values for representations"));
+ Persistence_diagram diagram1 = this->diagram; Persistence_diagram diagram2 = second.diagram;
+
+ if(this->approx == -1){
+ int num_pts1 = diagram1.size(); int num_pts2 = diagram2.size(); double k = 0;
+ for(int i = 0; i < num_pts1; i++)
+ for(int j = 0; j < num_pts2; j++)
+ k += this->weight(diagram1[i])*this->weight(diagram2[j])*exp(-((diagram1[i].first - diagram2[j].first) * (diagram1[i].first - diagram2[j].first) +
+ (diagram1[i].second - diagram2[j].second) * (diagram1[i].second - diagram2[j].second))
+ /(2*this->sigma*this->sigma));
+ return k;
+ }
+ else{
+ std::vector<std::pair<double,double> > z = random_Fourier(this->sigma, this->approx);
+ std::vector<std::pair<double,double> > b1 = Fourier_feat(diagram1,z,this->weight);
+ std::vector<std::pair<double,double> > b2 = Fourier_feat(diagram2,z,this->weight);
+ double d = 0; for(int i = 0; i < this->approx; i++) d += b1[i].first*b2[i].first + b1[i].second*b2[i].second;
+ return d/this->approx;
+ }
+ }
+
+ /** \brief Evaluation of the distance between images of diagrams in the Hilbert space of the kernel.
+ * \ingroup Persistence_weighted_gaussian
+ *
+ * @pre sigma, approx and weight attributes need to be the same for both instances.
+ * @param[in] second other instance of class Persistence_weighted_gaussian.
+ *
+ */
+ double distance(const Persistence_weighted_gaussian & second) const {
+ GUDHI_CHECK(this->sigma != second.sigma || this->approx != second.approx || this->weight != second.weight, std::invalid_argument("Error: different values for representations"));
+ return std::pow(this->compute_scalar_product(*this) + second.compute_scalar_product(second)-2*this->compute_scalar_product(second), 0.5);
+ }
+
+
+}; // class Persistence_weighted_gaussian
+} // namespace Persistence_representations
+} // namespace Gudhi
+
+#endif // PERSISTENCE_WEIGHTED_GAUSSIAN_H_
diff --git a/src/Persistence_representations/include/gudhi/Sliced_Wasserstein.h b/src/Persistence_representations/include/gudhi/Sliced_Wasserstein.h
new file mode 100644
index 00000000..d8ed0d98
--- /dev/null
+++ b/src/Persistence_representations/include/gudhi/Sliced_Wasserstein.h
@@ -0,0 +1,340 @@
+/* This file is part of the Gudhi Library. The Gudhi library
+ * (Geometric Understanding in Higher Dimensions) is a generic C++
+ * library for computational topology.
+ *
+ * Author(s): Mathieu Carriere
+ *
+ * Copyright (C) 2018 INRIA (France)
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#ifndef SLICED_WASSERSTEIN_H_
+#define SLICED_WASSERSTEIN_H_
+
+// gudhi include
+#include <gudhi/read_persistence_from_file.h>
+#include <gudhi/common_persistence_representations.h>
+#include <gudhi/Debug_utils.h>
+
+// standard include
+#include <cmath>
+#include <iostream>
+#include <vector>
+#include <limits>
+#include <fstream>
+#include <sstream>
+#include <algorithm>
+#include <string>
+#include <utility>
+#include <functional>
+
+namespace Gudhi {
+namespace Persistence_representations {
+
+/**
+ * \class Sliced_Wasserstein gudhi/Sliced_Wasserstein.h
+ * \brief A class implementing the Sliced Wasserstein kernel.
+ *
+ * \ingroup Persistence_representations
+ *
+ * \details
+ * The Sliced Wasserstein kernel is defined as a Gaussian-like kernel between persistence diagrams, where the distance used for
+ * comparison is the Sliced Wasserstein distance \f$SW\f$ between persistence diagrams, defined as the integral of the 1-norm
+ * between the sorted projections of the diagrams onto all lines passing through the origin:
+ *
+ * \f$ SW(D_1,D_2)=\int_{\theta\in\mathbb{S}}\,\|\pi_\theta(D_1\cup\pi_\Delta(D_2))-\pi_\theta(D_2\cup\pi_\Delta(D_1))\|_1{\rm d}\theta\f$,
+ *
+ * where \f$\pi_\theta\f$ is the projection onto the line defined with angle \f$\theta\f$ in the unit circle \f$\mathbb{S}\f$,
+ * and \f$\pi_\Delta\f$ is the projection onto the diagonal.
+ * The integral can be either computed exactly in \f$O(n^2{\rm log}(n))\f$ time, where \f$n\f$ is the number of points
+ * in the diagrams, or approximated by sampling \f$N\f$ lines in the circle in \f$O(Nn{\rm log}(n))\f$ time. The Sliced Wasserstein Kernel is then computed as:
+ *
+ * \f$ k(D_1,D_2) = {\rm exp}\left(-\frac{SW(D_1,D_2)}{2\sigma^2}\right).\f$
+ *
+ * For more details, please see \cite pmlr-v70-carriere17a .
+ *
+**/
+
+class Sliced_Wasserstein {
+
+ protected:
+ Persistence_diagram diagram;
+ int approx;
+ double sigma;
+ std::vector<std::vector<double> > projections, projections_diagonal;
+
+ public:
+
+ void build_rep(){
+
+ if(approx > 0){
+
+ double step = pi/this->approx;
+ int n = diagram.size();
+
+ for (int i = 0; i < this->approx; i++){
+ std::vector<double> l,l_diag;
+ for (int j = 0; j < n; j++){
+
+ double px = diagram[j].first; double py = diagram[j].second;
+ double proj_diag = (px+py)/2;
+
+ l.push_back ( px * cos(-pi/2+i*step) + py * sin(-pi/2+i*step) );
+ l_diag.push_back ( proj_diag * cos(-pi/2+i*step) + proj_diag * sin(-pi/2+i*step) );
+ }
+
+ std::sort(l.begin(), l.end()); std::sort(l_diag.begin(), l_diag.end());
+ projections.push_back(l); projections_diagonal.push_back(l_diag);
+
+ }
+
+ }
+
+ }
+
+ /** \brief Sliced Wasserstein kernel constructor.
+ * \ingroup Sliced_Wasserstein
+ *
+ * @param[in] _diagram persistence diagram.
+ * @param[in] _sigma bandwidth parameter.
+ * @param[in] _approx number of directions used to approximate the integral in the Sliced Wasserstein distance, set to -1 for exact computation.
+ *
+ */
+ Sliced_Wasserstein(const Persistence_diagram & _diagram, double _sigma = 1.0, int _approx = 100){diagram = _diagram; approx = _approx; sigma = _sigma; build_rep();}
+
+ // **********************************
+ // Utils.
+ // **********************************
+
+ // Compute the angle formed by two points of a PD
+ double compute_angle(const Persistence_diagram & diag, int i, int j) const {
+ std::pair<double,double> vect; double x1,y1, x2,y2;
+ x1 = diag[i].first; y1 = diag[i].second;
+ x2 = diag[j].first; y2 = diag[j].second;
+ if (y1 - y2 > 0){
+ vect.first = y1 - y2;
+ vect.second = x2 - x1;}
+ else{
+ if(y1 - y2 < 0){
+ vect.first = y2 - y1;
+ vect.second = x1 - x2;
+ }
+ else{
+ vect.first = 0;
+ vect.second = abs(x1 - x2);}
+ }
+ double norm = std::sqrt(vect.first*vect.first + vect.second*vect.second);
+ return asin(vect.second/norm);
+ }
+
+ // Compute the integral of |cos()| between alpha and beta, valid only if alpha is in [-pi,pi] and beta-alpha is in [0,pi]
+ double compute_int_cos(double alpha, double beta) const {
+ double res = 0;
+ if (alpha >= 0 && alpha <= pi){
+ if (cos(alpha) >= 0){
+ if(pi/2 <= beta){res = 2-sin(alpha)-sin(beta);}
+ else{res = sin(beta)-sin(alpha);}
+ }
+ else{
+ if(1.5*pi <= beta){res = 2+sin(alpha)+sin(beta);}
+ else{res = sin(alpha)-sin(beta);}
+ }
+ }
+ if (alpha >= -pi && alpha <= 0){
+ if (cos(alpha) <= 0){
+ if(-pi/2 <= beta){res = 2+sin(alpha)+sin(beta);}
+ else{res = sin(alpha)-sin(beta);}
+ }
+ else{
+ if(pi/2 <= beta){res = 2-sin(alpha)-sin(beta);}
+ else{res = sin(beta)-sin(alpha);}
+ }
+ }
+ return res;
+ }
+
+ double compute_int(double theta1, double theta2, int p, int q, const Persistence_diagram & diag1, const Persistence_diagram & diag2) const {
+ double norm = std::sqrt( (diag1[p].first-diag2[q].first)*(diag1[p].first-diag2[q].first) + (diag1[p].second-diag2[q].second)*(diag1[p].second-diag2[q].second) );
+ double angle1;
+ if (diag1[p].first > diag2[q].first)
+ angle1 = theta1 - asin( (diag1[p].second-diag2[q].second)/norm );
+ else
+ angle1 = theta1 - asin( (diag2[q].second-diag1[p].second)/norm );
+ double angle2 = angle1 + theta2 - theta1;
+ double integral = compute_int_cos(angle1,angle2);
+ return norm*integral;
+ }
+
+
+
+
+ // **********************************
+ // Scalar product + distance.
+ // **********************************
+
+ /** \brief Evaluation of the Sliced Wasserstein Distance between a pair of diagrams.
+ * \ingroup Sliced_Wasserstein
+ *
+ * @pre approx attribute needs to be the same for both instances.
+ * @param[in] second other instance of class Sliced_Wasserstein.
+ *
+ *
+ */
+ double compute_sliced_wasserstein_distance(const Sliced_Wasserstein & second) const {
+
+ GUDHI_CHECK(this->approx != second.approx, std::invalid_argument("Error: different approx values for representations"));
+
+ Persistence_diagram diagram1 = this->diagram; Persistence_diagram diagram2 = second.diagram; double sw = 0;
+
+ if(this->approx == -1){
+
+ // Add projections onto diagonal.
+ int n1, n2; n1 = diagram1.size(); n2 = diagram2.size(); double max_ordinate = std::numeric_limits<double>::lowest();
+ for (int i = 0; i < n2; i++){
+ max_ordinate = std::max(max_ordinate, diagram2[i].second);
+ diagram1.emplace_back( (diagram2[i].first+diagram2[i].second)/2, (diagram2[i].first+diagram2[i].second)/2 );
+ }
+ for (int i = 0; i < n1; i++){
+ max_ordinate = std::max(max_ordinate, diagram1[i].second);
+ diagram2.emplace_back( (diagram1[i].first+diagram1[i].second)/2, (diagram1[i].first+diagram1[i].second)/2 );
+ }
+ int num_pts_dgm = diagram1.size();
+
+ // Slightly perturb the points so that the PDs are in generic positions.
+ int mag = 0; while(max_ordinate > 10){mag++; max_ordinate/=10;}
+ double thresh = pow(10,-5+mag);
+ srand(time(NULL));
+ for (int i = 0; i < num_pts_dgm; i++){
+ diagram1[i].first += thresh*(1.0-2.0*rand()/RAND_MAX); diagram1[i].second += thresh*(1.0-2.0*rand()/RAND_MAX);
+ diagram2[i].first += thresh*(1.0-2.0*rand()/RAND_MAX); diagram2[i].second += thresh*(1.0-2.0*rand()/RAND_MAX);
+ }
+
+ // Compute all angles in both PDs.
+ std::vector<std::pair<double, std::pair<int,int> > > angles1, angles2;
+ for (int i = 0; i < num_pts_dgm; i++){
+ for (int j = i+1; j < num_pts_dgm; j++){
+ double theta1 = compute_angle(diagram1,i,j); double theta2 = compute_angle(diagram2,i,j);
+ angles1.emplace_back(theta1, std::pair<int,int>(i,j));
+ angles2.emplace_back(theta2, std::pair<int,int>(i,j));
+ }
+ }
+
+ // Sort angles.
+ std::sort(angles1.begin(), angles1.end(), [=](const std::pair<double, std::pair<int,int> >& p1, const std::pair<double, std::pair<int,int> >& p2){return (p1.first < p2.first);});
+ std::sort(angles2.begin(), angles2.end(), [=](const std::pair<double, std::pair<int,int> >& p1, const std::pair<double, std::pair<int,int> >& p2){return (p1.first < p2.first);});
+
+ // Initialize orders of the points of both PDs (given by ordinates when theta = -pi/2).
+ std::vector<int> orderp1, orderp2;
+ for (int i = 0; i < num_pts_dgm; i++){ orderp1.push_back(i); orderp2.push_back(i); }
+ std::sort( orderp1.begin(), orderp1.end(), [=](int i, int j){ if(diagram1[i].second != diagram1[j].second) return (diagram1[i].second < diagram1[j].second); else return (diagram1[i].first > diagram1[j].first); } );
+ std::sort( orderp2.begin(), orderp2.end(), [=](int i, int j){ if(diagram2[i].second != diagram2[j].second) return (diagram2[i].second < diagram2[j].second); else return (diagram2[i].first > diagram2[j].first); } );
+
+ // Find the inverses of the orders.
+ std::vector<int> order1(num_pts_dgm); std::vector<int> order2(num_pts_dgm);
+ for(int i = 0; i < num_pts_dgm; i++) for (int j = 0; j < num_pts_dgm; j++) if(orderp1[j] == i){ order1[i] = j; break; }
+ for(int i = 0; i < num_pts_dgm; i++) for (int j = 0; j < num_pts_dgm; j++) if(orderp2[j] == i){ order2[i] = j; break; }
+
+ // Record all inversions of points in the orders as theta varies along the positive half-disk.
+ std::vector<std::vector<std::pair<int,double> > > anglePerm1(num_pts_dgm);
+ std::vector<std::vector<std::pair<int,double> > > anglePerm2(num_pts_dgm);
+
+ int m1 = angles1.size();
+ for (int i = 0; i < m1; i++){
+ double theta = angles1[i].first; int p = angles1[i].second.first; int q = angles1[i].second.second;
+ anglePerm1[order1[p]].emplace_back(p,theta);
+ anglePerm1[order1[q]].emplace_back(q,theta);
+ int a = order1[p]; int b = order1[q]; order1[p] = b; order1[q] = a;
+ }
+
+ int m2 = angles2.size();
+ for (int i = 0; i < m2; i++){
+ double theta = angles2[i].first; int p = angles2[i].second.first; int q = angles2[i].second.second;
+ anglePerm2[order2[p]].emplace_back(p,theta);
+ anglePerm2[order2[q]].emplace_back(q,theta);
+ int a = order2[p]; int b = order2[q]; order2[p] = b; order2[q] = a;
+ }
+
+ for (int i = 0; i < num_pts_dgm; i++){
+ anglePerm1[order1[i]].emplace_back(i,pi/2);
+ anglePerm2[order2[i]].emplace_back(i,pi/2);
+ }
+
+ // Compute the SW distance with the list of inversions.
+ for (int i = 0; i < num_pts_dgm; i++){
+ std::vector<std::pair<int,double> > u,v; u = anglePerm1[i]; v = anglePerm2[i];
+ double theta1, theta2; theta1 = -pi/2;
+ unsigned int ku, kv; ku = 0; kv = 0; theta2 = std::min(u[ku].second,v[kv].second);
+ while(theta1 != pi/2){
+ if(diagram1[u[ku].first].first != diagram2[v[kv].first].first || diagram1[u[ku].first].second != diagram2[v[kv].first].second)
+ if(theta1 != theta2)
+ sw += compute_int(theta1, theta2, u[ku].first, v[kv].first, diagram1, diagram2);
+ theta1 = theta2;
+ if ( (theta2 == u[ku].second) && ku < u.size()-1 ) ku++;
+ if ( (theta2 == v[kv].second) && kv < v.size()-1 ) kv++;
+ theta2 = std::min(u[ku].second, v[kv].second);
+ }
+ }
+ }
+
+
+ else{
+
+ double step = pi/this->approx;
+ for (int i = 0; i < this->approx; i++){
+
+ std::vector<double> v1; std::vector<double> l1 = this->projections[i]; std::vector<double> l1bis = second.projections_diagonal[i]; std::merge(l1.begin(), l1.end(), l1bis.begin(), l1bis.end(), std::back_inserter(v1));
+ std::vector<double> v2; std::vector<double> l2 = second.projections[i]; std::vector<double> l2bis = this->projections_diagonal[i]; std::merge(l2.begin(), l2.end(), l2bis.begin(), l2bis.end(), std::back_inserter(v2));
+ int n = v1.size(); double f = 0;
+ for (int j = 0; j < n; j++) f += std::abs(v1[j] - v2[j]);
+ sw += f*step;
+
+ }
+ }
+
+ return sw/pi;
+ }
+
+ /** \brief Evaluation of the kernel on a pair of diagrams.
+ * \ingroup Sliced_Wasserstein
+ *
+ * @pre approx and sigma attributes need to be the same for both instances.
+ * @param[in] second other instance of class Sliced_Wasserstein.
+ *
+ */
+ double compute_scalar_product(const Sliced_Wasserstein & second) const {
+ GUDHI_CHECK(this->sigma != second.sigma, std::invalid_argument("Error: different sigma values for representations"));
+ return std::exp(-compute_sliced_wasserstein_distance(second)/(2*this->sigma*this->sigma));
+ }
+
+ /** \brief Evaluation of the distance between images of diagrams in the Hilbert space of the kernel.
+ * \ingroup Sliced_Wasserstein
+ *
+ * @pre approx and sigma attributes need to be the same for both instances.
+ * @param[in] second other instance of class Sliced_Wasserstein.
+ *
+ */
+ double distance(const Sliced_Wasserstein & second) const {
+ GUDHI_CHECK(this->sigma != second.sigma, std::invalid_argument("Error: different sigma values for representations"));
+ return std::pow(this->compute_scalar_product(*this) + second.compute_scalar_product(second)-2*this->compute_scalar_product(second), 0.5);
+ }
+
+
+
+
+}; // class Sliced_Wasserstein
+} // namespace Persistence_representations
+} // namespace Gudhi
+
+#endif // SLICED_WASSERSTEIN_H_
diff --git a/src/Persistence_representations/include/gudhi/Weight_functions.h b/src/Persistence_representations/include/gudhi/Weight_functions.h
new file mode 100644
index 00000000..78de406d
--- /dev/null
+++ b/src/Persistence_representations/include/gudhi/Weight_functions.h
@@ -0,0 +1,81 @@
+/* This file is part of the Gudhi Library. The Gudhi library
+ * (Geometric Understanding in Higher Dimensions) is a generic C++
+ * library for computational topology.
+ *
+ * Author(s): Mathieu Carriere
+ *
+ * Copyright (C) 2018 INRIA (France)
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#ifndef WEIGHT_FUNCTIONS_H_
+#define WEIGHT_FUNCTIONS_H_
+
+// gudhi include
+#include <gudhi/read_persistence_from_file.h>
+#include <gudhi/common_persistence_representations.h>
+
+// standard include
+#include <cmath>
+#include <iostream>
+#include <vector>
+#include <limits>
+#include <fstream>
+#include <sstream>
+#include <algorithm>
+#include <string>
+#include <utility>
+#include <functional>
+
+namespace Gudhi {
+namespace Persistence_representations {
+
+/** \fn static double pss_weight(std::pair<double,double> p)
+ * \brief Persistence Scale Space kernel weight function.
+ * \ingroup Persistence_representations
+ *
+ * @param[in] p point in 2D.
+ */
+static double pss_weight(std::pair<double,double> p) {if(p.second > p.first) return 1; else return -1;}
+
+/** \fn static double linear_weight(std::pair<double,double> p)
+ * \brief Linear weight function.
+ * \ingroup Persistence_representations
+ *
+ * @param[in] p point in 2D.
+ */
+static double linear_weight(std::pair<double,double> p) {return std::abs(p.second - p.first);}
+
+/** \fn static double const_weight(std::pair<double,double> p)
+ * \brief Constant weight function.
+ * \ingroup Persistence_representations
+ *
+ * @param[in] p point in 2D.
+ */
+static double const_weight(std::pair<double,double> p) {return 1;}
+
+/** \fn static std::function<double (std::pair<double,double>) > arctan_weight(double C, double alpha)
+ * \brief Returns the arctan weight function with parameters C and alpha.
+ * \ingroup Persistence_representations
+ *
+ * @param[in] C positive constant.
+ * @param[in] alpha positive power.
+ */
+static std::function<double (std::pair<double,double>) > arctan_weight(double C, double alpha) {return [=](std::pair<double,double> p){return C * atan(std::pow(std::abs(p.second - p.first), alpha));};}
+
+} // namespace Persistence_representations
+} // namespace Gudhi
+
+#endif // WEIGHT_FUNCTIONS_H_
diff --git a/src/Persistence_representations/include/gudhi/common_persistence_representations.h b/src/Persistence_representations/include/gudhi/common_persistence_representations.h
index 3d03f1f6..539eee60 100644
--- a/src/Persistence_representations/include/gudhi/common_persistence_representations.h
+++ b/src/Persistence_representations/include/gudhi/common_persistence_representations.h
@@ -26,17 +26,32 @@
#include <utility>
#include <string>
#include <cmath>
+#include <boost/math/constants/constants.hpp>
+
+
namespace Gudhi {
namespace Persistence_representations {
// this file contain an implementation of some common procedures used in Persistence_representations.
+static constexpr double pi = boost::math::constants::pi<double>();
+
+
+/**
+ * In this module, we use the name Persistence_diagram for the representation of a diagram in a vector of pairs of two double.
+ */
+using Persistence_diagram = std::vector<std::pair<double,double> >;
+
+/**
+ * In this module, we use the name Weight for the representation of a function taking a pair of two double and returning a double.
+ */
+using Weight = std::function<double (std::pair<double,double>) >;
// double epsi = std::numeric_limits<double>::epsilon();
double epsi = 0.000005;
/**
* A procedure used to compare doubles. Typically given two doubles A and B, comparing A == B is not good idea. In this
- *case, we use the procedure almostEqual with the epsi defined at
+ * case, we use the procedure almostEqual with the epsi defined at
* the top of the file. Setting up the epsi gives the user a tolerance on what should be consider equal.
**/
inline bool almost_equal(double a, double b) {
@@ -53,8 +68,7 @@ double birth_plus_deaths(std::pair<double, double> a) { return a.first + a.secon
// landscapes
/**
- * Given two points in R^2, the procedure compute the parameters A and B of the line y = Ax + B that crosses those two
- *points.
+ * Given two points in R^2, the procedure compute the parameters A and B of the line y = Ax + B that crosses those two points.
**/
std::pair<double, double> compute_parameters_of_a_line(std::pair<double, double> p1, std::pair<double, double> p2) {
double a = (p2.second - p1.second) / (p2.first - p1.first);
@@ -64,8 +78,7 @@ std::pair<double, double> compute_parameters_of_a_line(std::pair<double, double>
// landscapes
/**
- * This procedure given two points which lies on the opposite sides of x axis, compute x for which the line connecting
- *those two points crosses x axis.
+ * This procedure given two points which lies on the opposite sides of x axis, compute x for which the line connecting those two points crosses x axis.
**/
double find_zero_of_a_line_segment_between_those_two_points(std::pair<double, double> p1,
std::pair<double, double> p2) {
@@ -89,8 +102,7 @@ double find_zero_of_a_line_segment_between_those_two_points(std::pair<double, do
// landscapes
/**
* This method provides a comparison of points that is used in construction of persistence landscapes. The ordering is
- *lexicographical for the first coordinate, and reverse-lexicographical for the
- * second coordinate.
+ * lexicographical for the first coordinate, and reverse-lexicographical for the second coordinate.
**/
bool compare_points_sorting(std::pair<double, double> f, std::pair<double, double> s) {
if (f.first < s.first) {