summaryrefslogtreecommitdiff
path: root/src/Persistent_cohomology
diff options
context:
space:
mode:
Diffstat (limited to 'src/Persistent_cohomology')
-rw-r--r--src/Persistent_cohomology/concept/FilteredComplex.h17
-rw-r--r--src/Persistent_cohomology/doc/3DTorus_poch.pngbin0 -> 40164 bytes
-rw-r--r--src/Persistent_cohomology/doc/Intro_persistent_cohomology.h206
-rw-r--r--src/Persistent_cohomology/example/CMakeLists.txt100
-rw-r--r--src/Persistent_cohomology/example/README108
-rw-r--r--src/Persistent_cohomology/example/alpha_complex_3d_persistence.cpp (renamed from src/Persistent_cohomology/example/alpha_shapes_persistence.cpp)52
-rw-r--r--src/Persistent_cohomology/example/alpha_complex_persistence.cpp122
-rw-r--r--src/Persistent_cohomology/example/custom_persistence_sort.cpp137
-rw-r--r--src/Persistent_cohomology/example/performance_rips_persistence.cpp83
-rw-r--r--src/Persistent_cohomology/example/periodic_alpha_complex_3d_persistence.cpp313
-rw-r--r--src/Persistent_cohomology/example/persistence_from_file.cpp2
-rw-r--r--src/Persistent_cohomology/example/plain_homology.cpp95
-rw-r--r--src/Persistent_cohomology/example/rips_multifield_persistence.cpp5
-rw-r--r--src/Persistent_cohomology/example/rips_persistence.cpp8
-rw-r--r--src/Persistent_cohomology/example/rips_persistence_via_boundary_matrix.cpp180
-rw-r--r--src/Persistent_cohomology/include/gudhi/Persistent_cohomology.h298
-rw-r--r--src/Persistent_cohomology/include/gudhi/Persistent_cohomology/Multi_field.h3
-rw-r--r--src/Persistent_cohomology/include/gudhi/Persistent_cohomology/Persistent_cohomology_column.h1
-rw-r--r--src/Persistent_cohomology/test/CMakeLists.txt26
-rw-r--r--src/Persistent_cohomology/test/betti_numbers_unit_test.cpp234
-rw-r--r--src/Persistent_cohomology/test/persistent_cohomology_unit_test.cpp45
21 files changed, 1757 insertions, 278 deletions
diff --git a/src/Persistent_cohomology/concept/FilteredComplex.h b/src/Persistent_cohomology/concept/FilteredComplex.h
index 1834903b..c19698df 100644
--- a/src/Persistent_cohomology/concept/FilteredComplex.h
+++ b/src/Persistent_cohomology/concept/FilteredComplex.h
@@ -43,7 +43,7 @@ struct FilteredComplex
* is model of IndexingTag. */
typedef unspecified Indexing_tag;
-/** Returns a Simplex_hanlde that is different from all simplex handles
+/** Returns a Simplex_handle that is different from all simplex handles
* of the simplices. */
Simplex_handle null_simplex();
/** \brief Returns the number of simplices in the complex.
@@ -61,13 +61,14 @@ struct FilteredComplex
/** \brief Returns a key that is different from the keys associated
* to the simplices. */
Simplex_key null_key ();
-/** \brief Returns the key associated to a simplex. */
+/** \brief Returns the key associated to a simplex.
+ *
+ * This is never called on null_simplex(). */
Simplex_key key ( Simplex_handle sh );
-/** \brief Returns the simplex associated to a key.
- *
- * If key is different from null_key(), there must be a unique
- * simplex having this key. */
- Simplex_handle simplex ( Simplex_key key );
+/** \brief Returns the simplex that has index idx in the filtration.
+ *
+ * This is never called on null_key(). */
+ Simplex_handle simplex ( Simplex_key idx );
/** \brief Assign a key to a simplex. */
void assign_key(Simplex_handle sh, Simplex_key key);
@@ -138,6 +139,6 @@ Filtration_simplex_range filtration_simplex_range();
* @todo use an enum? Just a bool?
*/
//int is_before_in_filtration(Simplex_handle s, Simplex_handle t);
-/*************************************************/
+/*************************************************/
};
diff --git a/src/Persistent_cohomology/doc/3DTorus_poch.png b/src/Persistent_cohomology/doc/3DTorus_poch.png
new file mode 100644
index 00000000..1c9d8328
--- /dev/null
+++ b/src/Persistent_cohomology/doc/3DTorus_poch.png
Binary files differ
diff --git a/src/Persistent_cohomology/doc/Intro_persistent_cohomology.h b/src/Persistent_cohomology/doc/Intro_persistent_cohomology.h
new file mode 100644
index 00000000..433cfd3e
--- /dev/null
+++ b/src/Persistent_cohomology/doc/Intro_persistent_cohomology.h
@@ -0,0 +1,206 @@
+/* This file is part of the Gudhi Library. The Gudhi library
+ * (Geometric Understanding in Higher Dimensions) is a generic C++
+ * library for computational topology.
+ *
+ * Author(s): Clément Maria
+ *
+ * Copyright (C) 2014 INRIA Sophia Antipolis-Méditerranée (France)
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#ifndef DOC_PERSISTENT_COHOMOLOGY_INTRO_PERSISTENT_COHOMOLOGY_H_
+#define DOC_PERSISTENT_COHOMOLOGY_INTRO_PERSISTENT_COHOMOLOGY_H_
+
+// needs namespace for Doxygen to link on classes
+namespace Gudhi {
+// needs namespace for Doxygen to link on classes
+namespace persistent_cohomology {
+
+/** \defgroup persistent_cohomology Persistent Cohomology
+
+ \author Clément Maria
+
+ Computation of persistent cohomology using the algorithm of
+ \cite DBLP:journals/dcg/SilvaMV11 and \cite DBLP:journals/corr/abs-1208-5018
+ and the Compressed Annotation Matrix
+ implementation of \cite DBLP:conf/esa/BoissonnatDM13
+
+ The theory of homology consists in attaching to a topological space a sequence of
+ (homology) groups,
+ capturing global topological features
+ like connected components, holes, cavities, etc. Persistent homology studies the evolution
+ -- birth, life and death -- of
+ these features when the topological space is changing. Consequently, the theory is essentially
+ composed of three elements:
+ topological spaces, their homology groups and an evolution scheme.
+
+ \section persistencetopolocalspaces Topological Spaces
+ Topological spaces are represented by simplicial complexes.
+ Let \f$V = \{1, \cdots ,|V|\}\f$ be a set of <EM>vertices</EM>.
+ A <EM>simplex</EM> \f$\sigma\f$ is a subset of vertices
+ \f$\sigma \subseteq V\f$. A <EM>simplicial complex</EM> \f$\mathbf{K}\f$
+ on \f$V\f$ is a collection of simplices \f$\{\sigma\}\f$,
+ \f$\sigma \subseteq V\f$, such that \f$\tau \subseteq \sigma \in \mathbf{K}
+ \Rightarrow \tau \in \mathbf{K}\f$. The dimension \f$n=|\sigma|-1\f$ of \f$\sigma\f$
+ is its number of elements minus 1. A <EM>filtration</EM> of a simplicial complex is
+ a function \f$f:\mathbf{K} \rightarrow \mathbb{R}\f$ satisfying \f$f(\tau)\leq
+ f(\sigma)\f$ whenever \f$\tau \subseteq \sigma\f$.
+
+ We define the concept FilteredComplex which enumerates the requirements for a class
+ to represent a filtered complex from which persistent homology may be computed.
+ We use the vocabulary of simplicial complexes, but the concept
+ is valid for any type of cell complex. The main requirements
+ are the definition of:
+ \li type <CODE>Indexing_tag</CODE>, which is a model of the concept
+ <CODE>IndexingTag</CODE>,
+ describing the nature of the indexing scheme,
+ \li type Simplex_handle to manipulate simplices,
+ \li method <CODE>int dimension(Simplex_handle)</CODE> returning
+ the dimension of a simplex,
+ \li type and method <CODE>Boundary_simplex_range
+ boundary_simplex_range(Simplex_handle)</CODE> that returns
+ a range giving access to the codimension 1 subsimplices of the
+ input simplex, as-well-as the coefficients \f$(-1)^i\f$ in the
+ definition of the operator \f$\partial\f$. The iterators have
+ value type <CODE>Simplex_handle</CODE>,
+ \li type and method
+ <CODE>Filtration_simplex_range filtration_simplex_range ()</CODE>
+ that returns a range giving
+ access to all the simplices of the complex read in the order
+ assigned by the indexing scheme,
+ \li type and method
+ <CODE>Filtration_value filtration (Simplex_handle)</CODE> that returns the value of
+ the filtration on the simplex represented by the handle.
+
+ \section persistencehomology Homology
+ For a ring \f$\mathcal{R}\f$, the group of <EM>n-chains</EM>,
+ denoted \f$\mathbf{C}_n(\mathbf{K},\mathcal{R})\f$, of \f$\mathbf{K}\f$ is the
+ group of formal sums of
+ n-simplices with \f$\mathcal{R}\f$ coefficients. The <EM>boundary operator</EM> is a
+ linear operator
+ \f$\partial_n: \mathbf{C}_n(\mathbf{K},\mathcal{R}) \rightarrow \mathbf{C}_{n-1}(\mathbf{K},\mathcal{R})\f$
+ such that \f$\partial_n \sigma = \partial_n [v_0, \cdots , v_n] =
+ \sum_{i=0}^n (-1)^{i}[v_0,\cdots ,\widehat{v_i}, \cdots,v_n]\f$,
+ where \f$\widehat{v_i}\f$ means \f$v_i\f$ is omitted from the list. The chain
+ groups form a sequence:
+
+ \f[\cdots \ \ \mathbf{C}_n(\mathbf{K},\mathcal{R}) \xrightarrow{\ \partial_n\ } \mathbf{C}_{n-1}(\mathbf{K},\mathcal{R})
+ \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\ \partial_2 \ }
+ \mathbf{C}_1(\mathbf{K},\mathcal{R}) \xrightarrow{\ \partial_1 \ } \mathbf{C}_0(\mathbf{K},\mathcal{R}) \f]
+
+ of finitely many groups \f$\mathbf{C}_n(\mathbf{K},\mathcal{R})\f$ and homomorphisms
+ \f$\partial_n\f$, indexed by the dimension \f$n \geq 0\f$.
+ The boundary operators satisfy the property \f$\partial_n \circ \partial_{n+1}=0\f$
+ for every \f$n > 0\f$
+ and we define the homology groups:
+
+ \f[\mathbf{H}_n(\mathbf{K},\mathcal{R}) = \ker \partial_n / \mathrm{im} \ \partial_{n+1}\f]
+
+ We refer to \cite Munkres-elementsalgtop1984 for an introduction to homology
+ theory and to \cite DBLP:books/daglib/0025666 for an introduction to persistent homology.
+
+ \section persistenceindexingscheme Indexing Scheme
+ "Changing" a simplicial complex consists in applying a simplicial map.
+ An <EM>indexing scheme</EM> is a directed graph together with a traversal
+ order, such that two
+ consecutive nodes in the graph are connected by an arrow (either forward or backward).
+ The nodes represent simplicial complexes and the directed edges simplicial maps.
+
+ From the computational point of view, there are two types of indexing schemes of
+ interest
+ in persistent homology: <EM>linear</EM> ones
+ \f$\bullet \longrightarrow \bullet \longrightarrow \cdots \longrightarrow \bullet
+ \longrightarrow \bullet\f$
+ in persistent homology \cite DBLP:journals/dcg/ZomorodianC05 ,
+ and <EM>zigzag</EM> ones
+ \f$\bullet \longrightarrow \bullet \longleftarrow \cdots
+ \longrightarrow \bullet
+ \longleftarrow \bullet \f$ in zigzag persistent
+ homology \cite DBLP:journals/focm/CarlssonS10.
+ These indexing schemes have a natural left-to-right traversal order, and we
+ describe them with ranges and iterators.
+ In the current release of the Gudhi library, only the linear case is implemented.
+
+ In the following, we consider the case where the indexing scheme is induced
+ by a filtration.
+ Ordering the simplices
+ by increasing filtration values (breaking ties so as a simplex appears after
+ its subsimplices of same filtration value) provides an indexing scheme.
+
+\section pcohexamples Examples
+
+We provide several example files: run these examples with -h for details on their use, and read the README file.
+
+\li <a href="_persistent_cohomology_2rips_persistence_8cpp-example.html">
+Persistent_cohomology/rips_persistence.cpp</a> computes the Rips complex of a point cloud and its persistence diagram.
+
+\li <a href="_persistent_cohomology_2rips_multifield_persistence_8cpp-example.html">
+Persistent_cohomology/rips_multifield_persistence.cpp</a> computes the Rips complex of a point cloud and its
+persistence diagram with a family of field coefficients.
+
+\li <a href="_persistent_cohomology_2performance_rips_persistence_8cpp-example.html">
+Persistent_cohomology/performance_rips_persistence.cpp</a> provides timings for the construction of the Rips complex
+on a set of points sampling a Klein bottle in \f$\mathbb{R}^5\f$ with a simplex tree, its conversion to a
+Hasse diagram and the computation of persistent homology and multi-field persistent homology for the
+different representations.
+
+\li <a href="_persistent_cohomology_2alpha_complex_3d_persistence_8cpp-example.html">
+Persistent_cohomology/alpha_complex_3d_persistence.cpp</a> computes the persistent homology with
+\f$\mathbb{Z}/2\mathbb{Z}\f$ coefficients of the alpha complex on points sampling from an OFF file.
+\code $> ./alpha_complex_3d_persistence ../../data/points/tore3D_300.off 2 0.45 \endcode
+\code Simplex_tree dim: 3
+2 0 0 inf
+2 1 0.0682162 1.0001
+2 1 0.0934117 1.00003
+2 2 0.56444 1.03938 \endcode
+
+\li <a href="_persistent_cohomology_2alpha_complex_persistence_8cpp-example.html">
+Persistent_cohomology/alpha_complex_persistence.cpp</a> computes the persistent homology with
+\f$\mathbb{Z}/p\mathbb{Z}\f$ coefficients of the alpha complex on points sampling from an OFF file.
+\code $> ./alpha_complex_persistence -r 32 -p 2 -m 0.45 ../../data/points/tore3D_300.off \endcode
+\code Alpha complex is of dimension 3 - 9273 simplices - 300 vertices.
+Simplex_tree dim: 3
+2 0 0 inf
+2 1 0.0682162 1.0001
+2 1 0.0934117 1.00003
+2 2 0.56444 1.03938 \endcode
+
+\li <a href="_persistent_cohomology_2periodic_alpha_complex_3d_persistence_8cpp-example.html">
+Persistent_cohomology/periodic_alpha_complex_3d_persistence.cpp</a> computes the persistent homology with
+\f$\mathbb{Z}/2\mathbb{Z}\f$ coefficients of the periodic alpha complex on points sampling from an OFF file.
+\code $> ./periodic_alpha_complex_3d_persistence ../../data/points/grid_10_10_10_in_0_1.off 3 1.0 \endcode
+\code Periodic Delaunay computed.
+Simplex_tree dim: 3
+3 0 0 inf
+3 1 0.0025 inf
+3 1 0.0025 inf
+3 1 0.0025 inf
+3 2 0.005 inf
+3 2 0.005 inf
+3 2 0.005 inf
+3 3 0.0075 inf \endcode
+
+\li <a href="_persistent_cohomology_2plain_homology_8cpp-example.html">
+Persistent_cohomology/plain_homology.cpp</a> computes the plain homology of a simple simplicial complex without
+filtration values.
+
+ \copyright GNU General Public License v3.
+ */
+
+} // namespace persistent_cohomology
+
+} // namespace Gudhi
+
+#endif // DOC_PERSISTENT_COHOMOLOGY_INTRO_PERSISTENT_COHOMOLOGY_H_
diff --git a/src/Persistent_cohomology/example/CMakeLists.txt b/src/Persistent_cohomology/example/CMakeLists.txt
index ea69352e..758bd6b1 100644
--- a/src/Persistent_cohomology/example/CMakeLists.txt
+++ b/src/Persistent_cohomology/example/CMakeLists.txt
@@ -1,44 +1,84 @@
cmake_minimum_required(VERSION 2.6)
-project(GUDHIExPersCohom)
+project(Persistent_cohomology_examples)
# problem with Visual Studio link on Boost program_options
add_definitions( -DBOOST_ALL_NO_LIB )
add_definitions( -DBOOST_ALL_DYN_LINK )
+add_executable(plain_homology plain_homology.cpp)
+target_link_libraries(plain_homology ${Boost_SYSTEM_LIBRARY})
+
add_executable(persistence_from_simple_simplex_tree persistence_from_simple_simplex_tree.cpp)
target_link_libraries(persistence_from_simple_simplex_tree ${Boost_SYSTEM_LIBRARY})
-add_test(persistence_from_simple_simplex_tree ${CMAKE_CURRENT_BINARY_DIR}/persistence_from_simple_simplex_tree 1 0)
add_executable(rips_persistence rips_persistence.cpp)
target_link_libraries(rips_persistence ${Boost_SYSTEM_LIBRARY} ${Boost_PROGRAM_OPTIONS_LIBRARY})
-
-add_test(rips_persistence_3 ${CMAKE_CURRENT_BINARY_DIR}/rips_persistence ${CMAKE_SOURCE_DIR}/data/points/Kl.txt -r 0.25 -d 3 -p 3 -m 100)
-
+
+add_executable(rips_persistence_via_boundary_matrix rips_persistence_via_boundary_matrix.cpp)
+target_link_libraries(rips_persistence_via_boundary_matrix ${Boost_SYSTEM_LIBRARY} ${Boost_PROGRAM_OPTIONS_LIBRARY})
+
add_executable(persistence_from_file persistence_from_file.cpp)
target_link_libraries(persistence_from_file ${Boost_SYSTEM_LIBRARY} ${Boost_PROGRAM_OPTIONS_LIBRARY})
-add_test(persistence_from_file_3_2_0 ${CMAKE_CURRENT_BINARY_DIR}/persistence_from_file ${CMAKE_SOURCE_DIR}/data/points/bunny_5000.st -p 2 -m 0)
-add_test(persistence_from_file_3_3_100 ${CMAKE_CURRENT_BINARY_DIR}/persistence_from_file ${CMAKE_SOURCE_DIR}/data/points/bunny_5000.st -p 3 -m 100)
-
-if(GMPXX_FOUND AND GMP_FOUND)
- message("GMPXX_LIBRARIES = ${GMPXX_LIBRARIES}")
- message("GMP_LIBRARIES = ${GMP_LIBRARIES}")
-
- add_executable(rips_multifield_persistence rips_multifield_persistence.cpp )
- target_link_libraries(rips_multifield_persistence ${Boost_SYSTEM_LIBRARY} ${Boost_PROGRAM_OPTIONS_LIBRARY} ${GMPXX_LIBRARIES} ${GMP_LIBRARIES})
- add_test(rips_multifield_persistence_2_71 ${CMAKE_CURRENT_BINARY_DIR}/rips_multifield_persistence ${CMAKE_SOURCE_DIR}/data/points/Kl.txt -r 0.25 -d 3 -p 2 -q 71 -m 100)
-
- add_executable ( performance_rips_persistence performance_rips_persistence.cpp )
- target_link_libraries(performance_rips_persistence ${Boost_SYSTEM_LIBRARY} ${Boost_PROGRAM_OPTIONS_LIBRARY} ${GMPXX_LIBRARIES} ${GMP_LIBRARIES})
-
- if(CGAL_FOUND)
- if (CMAKE_BUILD_TYPE MATCHES Debug)
- # For programs to be more verbose
- add_definitions(-DDEBUG_TRACES)
- endif()
- add_executable(alpha_shapes_persistence alpha_shapes_persistence.cpp)
- target_link_libraries(alpha_shapes_persistence ${Boost_SYSTEM_LIBRARY} ${GMPXX_LIBRARIES} ${GMP_LIBRARIES} ${CGAL_LIBRARY})
- add_test(alpha_shapes_persistence_2_0_5 ${CMAKE_CURRENT_BINARY_DIR}/alpha_shapes_persistence ${CMAKE_SOURCE_DIR}/data/points/bunny_5000 2 0.5)
- #add_test(alpha_shapes_persistence_3_3_100 ${CMAKE_CURRENT_BINARY_DIR}/alpha_shapes_persistence ${CMAKE_SOURCE_DIR}/data/points/bunny_5000.st -p 3 -m 100)
- endif()
-
+
+if (TBB_FOUND)
+ target_link_libraries(plain_homology ${TBB_LIBRARIES})
+ target_link_libraries(persistence_from_simple_simplex_tree ${TBB_LIBRARIES})
+ target_link_libraries(rips_persistence ${TBB_LIBRARIES})
+ target_link_libraries(rips_persistence_via_boundary_matrix ${TBB_LIBRARIES})
+ target_link_libraries(persistence_from_file ${TBB_LIBRARIES})
endif()
+
+add_test(plain_homology ${CMAKE_CURRENT_BINARY_DIR}/plain_homology)
+add_test(persistence_from_simple_simplex_tree ${CMAKE_CURRENT_BINARY_DIR}/persistence_from_simple_simplex_tree 1 0)
+add_test(rips_persistence_3 ${CMAKE_CURRENT_BINARY_DIR}/rips_persistence ${CMAKE_SOURCE_DIR}/data/points/Kl.txt -r 0.16 -d 3 -p 3 -m 100)
+add_test(rips_persistence_via_boundary_matrix_3 ${CMAKE_CURRENT_BINARY_DIR}/rips_persistence_via_boundary_matrix ${CMAKE_SOURCE_DIR}/data/points/Kl.txt -r 0.16 -d 3 -p 3 -m 100)
+add_test(persistence_from_file_3_2_0 ${CMAKE_CURRENT_BINARY_DIR}/persistence_from_file ${CMAKE_SOURCE_DIR}/data/filtered_simplicial_complex/bunny_5000_complex.fsc -p 2 -m 0)
+add_test(persistence_from_file_3_3_100 ${CMAKE_CURRENT_BINARY_DIR}/persistence_from_file ${CMAKE_SOURCE_DIR}/data/filtered_simplicial_complex/bunny_5000_complex.fsc -p 3 -m 100)
+
+if(GMP_FOUND)
+ if(GMPXX_FOUND)
+ add_executable(rips_multifield_persistence rips_multifield_persistence.cpp )
+ target_link_libraries(rips_multifield_persistence ${Boost_SYSTEM_LIBRARY} ${Boost_PROGRAM_OPTIONS_LIBRARY} ${GMPXX_LIBRARIES} ${GMP_LIBRARIES})
+ add_executable ( performance_rips_persistence performance_rips_persistence.cpp )
+ target_link_libraries(performance_rips_persistence ${Boost_SYSTEM_LIBRARY} ${Boost_PROGRAM_OPTIONS_LIBRARY} ${GMPXX_LIBRARIES} ${GMP_LIBRARIES})
+ if (TBB_FOUND)
+ target_link_libraries(rips_multifield_persistence ${TBB_LIBRARIES})
+ target_link_libraries(performance_rips_persistence ${TBB_LIBRARIES})
+ endif(TBB_FOUND)
+
+ add_test(rips_multifield_persistence_2_71 ${CMAKE_CURRENT_BINARY_DIR}/rips_multifield_persistence ${CMAKE_SOURCE_DIR}/data/points/Kl.txt -r 0.2 -d 3 -p 2 -q 71 -m 100)
+ endif(GMPXX_FOUND)
+endif(GMP_FOUND)
+
+if(CGAL_FOUND)
+ add_executable(alpha_complex_3d_persistence alpha_complex_3d_persistence.cpp)
+ target_link_libraries(alpha_complex_3d_persistence ${Boost_SYSTEM_LIBRARY} ${CGAL_LIBRARY})
+
+ if (TBB_FOUND)
+ target_link_libraries(alpha_complex_3d_persistence ${TBB_LIBRARIES})
+ endif(TBB_FOUND)
+ add_test(alpha_complex_3d_persistence_2_0_5 ${CMAKE_CURRENT_BINARY_DIR}/alpha_complex_3d_persistence ${CMAKE_SOURCE_DIR}/data/points/tore3D_300.off 2 0.45)
+
+
+ if (NOT CGAL_VERSION VERSION_LESS 4.7.0)
+ if (EIGEN3_FOUND)
+ add_executable (alpha_complex_persistence alpha_complex_persistence.cpp)
+ target_link_libraries(alpha_complex_persistence ${Boost_SYSTEM_LIBRARY} ${CGAL_LIBRARY} ${Boost_PROGRAM_OPTIONS_LIBRARY})
+
+ add_executable(periodic_alpha_complex_3d_persistence periodic_alpha_complex_3d_persistence.cpp)
+ target_link_libraries(periodic_alpha_complex_3d_persistence ${Boost_SYSTEM_LIBRARY} ${CGAL_LIBRARY})
+
+ add_executable(custom_persistence_sort custom_persistence_sort.cpp)
+ target_link_libraries(custom_persistence_sort ${Boost_SYSTEM_LIBRARY} ${CGAL_LIBRARY})
+
+ if (TBB_FOUND)
+ target_link_libraries(alpha_complex_persistence ${TBB_LIBRARIES})
+ target_link_libraries(periodic_alpha_complex_3d_persistence ${TBB_LIBRARIES})
+ target_link_libraries(custom_persistence_sort ${TBB_LIBRARIES})
+ endif(TBB_FOUND)
+ add_test(alpha_complex_persistence_2_0_45 ${CMAKE_CURRENT_BINARY_DIR}/alpha_complex_persistence ${CMAKE_SOURCE_DIR}/data/points/tore3D_300.off -m 0.45 -p 2)
+ add_test(periodic_alpha_complex_3d_persistence_2_0 ${CMAKE_CURRENT_BINARY_DIR}/periodic_alpha_complex_3d_persistence ${CMAKE_SOURCE_DIR}/data/points/grid_10_10_10_in_0_1.off ${CMAKE_SOURCE_DIR}/data/points/iso_cuboid_3_in_0_1.txt 2 0)
+ add_test(custom_persistence_sort ${CMAKE_CURRENT_BINARY_DIR}/custom_persistence_sort)
+ endif(EIGEN3_FOUND)
+ endif (NOT CGAL_VERSION VERSION_LESS 4.7.0)
+endif(CGAL_FOUND)
diff --git a/src/Persistent_cohomology/example/README b/src/Persistent_cohomology/example/README
index 8c71ccf5..7803e5ab 100644
--- a/src/Persistent_cohomology/example/README
+++ b/src/Persistent_cohomology/example/README
@@ -4,13 +4,13 @@ cd /path-to-example/
cmake .
make
-
-Example of use :
+***********************************************************************************************************************
+Example of use of RIPS:
Computation of the persistent homology with Z/2Z coefficients of the Rips complex on points
sampling a Klein bottle:
-./rips_persistence ../../../data/points/Kl.txt -r 0.25 -d 3 -p 2 -m 100
+./rips_persistence ../../data/points/Kl.txt -r 0.25 -d 3 -p 2 -m 100
output:
210 0 0 inf
@@ -29,7 +29,7 @@ where
with Z/3Z coefficients:
-./rips_persistence ../../../data/points/Kl.txt -r 0.25 -d 3 -p 3 -m 100
+./rips_persistence ../../data/points/Kl.txt -r 0.25 -d 3 -p 3 -m 100
output:
3 0 0 inf
@@ -37,7 +37,7 @@ output:
and the computation with Z/2Z and Z/3Z coefficients simultaneously:
-./rips_multifield_persistence ../../../data/points/Kl.txt -r 0.25 -d 3 -p 2 -q 3 -m 100
+./rips_multifield_persistence ../../data/points/Kl.txt -r 0.25 -d 3 -p 2 -q 3 -m 100
output:
6 0 0 inf
@@ -47,10 +47,106 @@ output:
and finally the computation with all Z/pZ for 2 <= p <= 71 (20 first prime numbers):
- ./rips_multifield_persistence ../../../data/points/Kl.txt -r 0.25 -d 3 -p 2 -q 71 -m 100
+ ./rips_multifield_persistence ../../data/points/Kl.txt -r 0.25 -d 3 -p 2 -q 71 -m 100
output:
557940830126698960967415390 0 0 inf
557940830126698960967415390 1 0.0702103 inf
2 1 0.0702103 inf
2 2 0.159992 inf
+
+***********************************************************************************************************************
+Example of use of ALPHA:
+
+For a more verbose mode, please run cmake with option "DEBUG_TRACES=TRUE" and recompile the programs.
+
+1) 3D special case
+------------------
+Computation of the persistent homology with Z/2Z coefficients of the alpha complex on points
+sampling a torus 3D:
+
+./alpha_complex_3d_persistence ../../data/points/tore3D_300.off 2 0.45
+
+output:
+Simplex_tree dim: 3
+2 0 0 inf
+2 1 0.0682162 1.0001
+2 1 0.0934117 1.00003
+2 2 0.56444 1.03938
+
+Here we retrieve expected Betti numbers on a tore 3D:
+Betti numbers[0] = 1
+Betti numbers[1] = 2
+Betti numbers[2] = 1
+
+N.B.: - alpha_complex_3d_persistence accepts only OFF files in 3D dimension.
+ - filtration values are alpha square values
+
+2) d-Dimension case
+-------------------
+Computation of the persistent homology with Z/2Z coefficients of the alpha complex on points
+sampling a torus 3D:
+
+./alpha_complex_persistence -r 32 -p 2 -m 0.45 ../../data/points/tore3D_300.off
+
+output:
+Alpha complex is of dimension 3 - 9273 simplices - 300 vertices.
+Simplex_tree dim: 3
+2 0 0 inf
+2 1 0.0682162 1.0001
+2 1 0.0934117 1.00003
+2 2 0.56444 1.03938
+
+Here we retrieve expected Betti numbers on a tore 3D:
+Betti numbers[0] = 1
+Betti numbers[1] = 2
+Betti numbers[2] = 1
+
+N.B.: - alpha_complex_persistence accepts OFF files in d-Dimension.
+ - filtration values are alpha square values
+
+3) 3D periodic special case
+---------------------------
+./periodic_alpha_complex_3d_persistence ../../data/points/grid_10_10_10_in_0_1.off 3 1.0
+
+output:
+Periodic Delaunay computed.
+Simplex_tree dim: 3
+3 0 0 inf
+3 1 0.0025 inf
+3 1 0.0025 inf
+3 1 0.0025 inf
+3 2 0.005 inf
+3 2 0.005 inf
+3 2 0.005 inf
+3 3 0.0075 inf
+
+Here we retrieve expected Betti numbers on a tore 3D:
+Betti numbers[0] = 1
+Betti numbers[1] = 3
+Betti numbers[2] = 3
+Betti numbers[3] = 1
+
+N.B.: - periodic_alpha_complex_3d_persistence accepts only OFF files in 3D dimension. In this example, the periodic cube
+is hard coded to { x = [0,1]; y = [0,1]; z = [0,1] }
+ - filtration values are alpha square values
+
+***********************************************************************************************************************
+Example of use of PLAIN HOMOLOGY:
+
+This example computes the plain homology of the following simplicial complex without filtration values:
+ /* Complex to build. */
+ /* 1 3 */
+ /* o---o */
+ /* /X\ / */
+ /* o---o o */
+ /* 2 0 4 */
+
+./plain_homology
+
+output:
+2 0 0 inf
+2 0 0 inf
+2 1 0 inf
+
+Here we retrieve the 2 entities {0,1,2,3} and {4} (Betti numbers[0] = 2) and the hole in {0,1,3} (Betti numbers[1] = 1)
diff --git a/src/Persistent_cohomology/example/alpha_shapes_persistence.cpp b/src/Persistent_cohomology/example/alpha_complex_3d_persistence.cpp
index 6d5eebcf..48fbb91a 100644
--- a/src/Persistent_cohomology/example/alpha_shapes_persistence.cpp
+++ b/src/Persistent_cohomology/example/alpha_complex_3d_persistence.cpp
@@ -20,9 +20,9 @@
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
-#include <gudhi/graph_simplicial_complex.h>
#include <gudhi/Simplex_tree.h>
#include <gudhi/Persistent_cohomology.h>
+#include <gudhi/Points_3D_off_io.h>
#include <boost/variant.hpp>
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
@@ -39,9 +39,6 @@
#include <list>
#include <vector>
-using namespace Gudhi;
-using namespace Gudhi::persistent_cohomology;
-
// Alpha_shape_3 templates type definitions
typedef CGAL::Exact_predicates_inexact_constructions_kernel Kernel;
typedef CGAL::Alpha_shape_vertex_base_3<Kernel> Vb;
@@ -66,10 +63,12 @@ typedef Alpha_shape_3::Edge Edge_3;
typedef std::list<Alpha_shape_3::Vertex_handle> Vertex_list;
// gudhi type definition
-typedef Simplex_tree<>::Vertex_handle Simplex_tree_vertex;
+typedef Gudhi::Simplex_tree<Gudhi::Simplex_tree_options_fast_persistence> ST;
+typedef ST::Vertex_handle Simplex_tree_vertex;
typedef std::map<Alpha_shape_3::Vertex_handle, Simplex_tree_vertex > Alpha_shape_simplex_tree_map;
typedef std::pair<Alpha_shape_3::Vertex_handle, Simplex_tree_vertex> Alpha_shape_simplex_tree_pair;
typedef std::vector< Simplex_tree_vertex > Simplex_tree_vector_vertex;
+typedef Gudhi::persistent_cohomology::Persistent_cohomology< ST, Gudhi::persistent_cohomology::Field_Zp > PCOH;
Vertex_list from(const Cell_handle& ch) {
Vertex_list the_list;
@@ -124,40 +123,33 @@ void usage(char * const progName) {
}
int main(int argc, char * const argv[]) {
- int coeff_field_characteristic = 0;
- int returnedScanValue = sscanf(argv[2], "%d", &coeff_field_characteristic);
- if ((returnedScanValue == EOF) || (coeff_field_characteristic <= 0)) {
- std::cerr << "Error: " << argv[2] << " is not correct\n";
+ // program args management
+ if (argc != 4) {
+ std::cerr << "Error: Number of arguments (" << argc << ") is not correct\n";
usage(argv[0]);
}
+ int coeff_field_characteristic = atoi(argv[2]);
+
Filtration_value min_persistence = 0.0;
- returnedScanValue = sscanf(argv[3], "%lf", &min_persistence);
+ int returnedScanValue = sscanf(argv[3], "%lf", &min_persistence);
if ((returnedScanValue == EOF) || (min_persistence < -1.0)) {
std::cerr << "Error: " << argv[3] << " is not correct\n";
usage(argv[0]);
}
- // program args management
- if (argc != 4) {
- std::cerr << "Error: Number of arguments (" << argc << ") is not correct\n";
+ // Read points from file
+ std::string offInputFile(argv[1]);
+ // Read the OFF file (input file name given as parameter) and triangulate points
+ Gudhi::Points_3D_off_reader<Point_3> off_reader(offInputFile);
+ // Check the read operation was correct
+ if (!off_reader.is_valid()) {
+ std::cerr << "Unable to read file " << offInputFile << std::endl;
usage(argv[0]);
}
- // Read points from file
- std::string filegraph = argv[1];
- std::list<Point_3> lp;
- std::ifstream is(filegraph.c_str());
- int n;
- is >> n;
-#ifdef DEBUG_TRACES
- std::cout << "Reading " << n << " points " << std::endl;
-#endif // DEBUG_TRACES
- Point_3 p;
- for (; n > 0; n--) {
- is >> p;
- lp.push_back(p);
- }
+ // Retrieve the triangulation
+ std::vector<Point_3> lp = off_reader.get_point_cloud();
// alpha shape construction from points. CGAL has a strange behavior in REGULARIZED mode.
Alpha_shape_3 as(lp.begin(), lp.end(), 0, Alpha_shape_3::GENERAL);
@@ -184,7 +176,7 @@ int main(int argc, char * const argv[]) {
// Loop on objects vector
Vertex_list vertex_list;
- Simplex_tree<> simplex_tree;
+ ST simplex_tree;
Alpha_shape_simplex_tree_map map_cgal_simplex_tree;
std::vector<Alpha_value_type>::iterator the_alpha_value_iterator = the_alpha_values.begin();
int dim_max = 0;
@@ -239,7 +231,7 @@ int main(int argc, char * const argv[]) {
}
}
// Construction of the simplex_tree
- Filtration_value filtr = std::sqrt(*the_alpha_value_iterator);
+ Filtration_value filtr = /*std::sqrt*/(*the_alpha_value_iterator);
#ifdef DEBUG_TRACES
std::cout << "filtration = " << filtr << std::endl;
#endif // DEBUG_TRACES
@@ -281,7 +273,7 @@ int main(int argc, char * const argv[]) {
std::cout << "Simplex_tree dim: " << simplex_tree.dimension() << std::endl;
// Compute the persistence diagram of the complex
- Persistent_cohomology< Simplex_tree<>, Field_Zp > pcoh(simplex_tree);
+ PCOH pcoh(simplex_tree);
// initializes the coefficient field for homology
pcoh.init_coefficients(coeff_field_characteristic);
diff --git a/src/Persistent_cohomology/example/alpha_complex_persistence.cpp b/src/Persistent_cohomology/example/alpha_complex_persistence.cpp
new file mode 100644
index 00000000..2412569a
--- /dev/null
+++ b/src/Persistent_cohomology/example/alpha_complex_persistence.cpp
@@ -0,0 +1,122 @@
+#include <boost/program_options.hpp>
+
+#include <CGAL/Epick_d.h>
+
+#include <gudhi/Alpha_complex.h>
+#include <gudhi/Persistent_cohomology.h>
+// to construct a simplex_tree from alpha complex
+#include <gudhi/Simplex_tree.h>
+
+#include <iostream>
+#include <string>
+#include <limits> // for numeric_limits
+
+void program_options(int argc, char * argv[]
+ , std::string & off_file_points
+ , std::string & output_file_diag
+ , Filtration_value & alpha_square_max_value
+ , int & coeff_field_characteristic
+ , Filtration_value & min_persistence);
+
+int main(int argc, char **argv) {
+ std::string off_file_points;
+ std::string output_file_diag;
+ Filtration_value alpha_square_max_value;
+ int coeff_field_characteristic;
+ Filtration_value min_persistence;
+
+ program_options(argc, argv, off_file_points, output_file_diag, alpha_square_max_value,
+ coeff_field_characteristic, min_persistence);
+
+ // ----------------------------------------------------------------------------
+ // Init of an alpha complex from an OFF file
+ // ----------------------------------------------------------------------------
+ using Kernel = CGAL::Epick_d< CGAL::Dynamic_dimension_tag >;
+ Gudhi::alpha_complex::Alpha_complex<Kernel> alpha_complex_from_file(off_file_points);
+
+ Gudhi::Simplex_tree<> simplex;
+ if (alpha_complex_from_file.create_complex(simplex, alpha_square_max_value)) {
+ // ----------------------------------------------------------------------------
+ // Display information about the alpha complex
+ // ----------------------------------------------------------------------------
+ std::cout << "Simplicial complex is of dimension " << simplex.dimension() <<
+ " - " << simplex.num_simplices() << " simplices - " <<
+ simplex.num_vertices() << " vertices." << std::endl;
+
+ // Sort the simplices in the order of the filtration
+ simplex.initialize_filtration();
+
+ std::cout << "Simplex_tree dim: " << simplex.dimension() << std::endl;
+ // Compute the persistence diagram of the complex
+ Gudhi::persistent_cohomology::Persistent_cohomology< Gudhi::Simplex_tree<>,
+ Gudhi::persistent_cohomology::Field_Zp > pcoh(simplex);
+ // initializes the coefficient field for homology
+ pcoh.init_coefficients(coeff_field_characteristic);
+
+ pcoh.compute_persistent_cohomology(min_persistence);
+
+ // Output the diagram in filediag
+ if (output_file_diag.empty()) {
+ pcoh.output_diagram();
+ } else {
+ std::cout << "Result in file: " << output_file_diag << std::endl;
+ std::ofstream out(output_file_diag);
+ pcoh.output_diagram(out);
+ out.close();
+ }
+ }
+
+ return 0;
+}
+
+void program_options(int argc, char * argv[]
+ , std::string & off_file_points
+ , std::string & output_file_diag
+ , Filtration_value & alpha_square_max_value
+ , int & coeff_field_characteristic
+ , Filtration_value & min_persistence) {
+ namespace po = boost::program_options;
+ po::options_description hidden("Hidden options");
+ hidden.add_options()
+ ("input-file", po::value<std::string>(&off_file_points),
+ "Name of file containing a point set. Format is one point per line: X1 ... Xd ");
+
+ po::options_description visible("Allowed options", 100);
+ visible.add_options()
+ ("help,h", "produce help message")
+ ("output-file,o", po::value<std::string>(&output_file_diag)->default_value(std::string()),
+ "Name of file in which the persistence diagram is written. Default print in std::cout")
+ ("max-alpha-square-value,r",
+ po::value<Filtration_value>(&alpha_square_max_value)->default_value(std::numeric_limits<Filtration_value>::infinity()),
+ "Maximal alpha square value for the Alpha complex construction.")
+ ("field-charac,p", po::value<int>(&coeff_field_characteristic)->default_value(11),
+ "Characteristic p of the coefficient field Z/pZ for computing homology.")
+ ("min-persistence,m", po::value<Filtration_value>(&min_persistence),
+ "Minimal lifetime of homology feature to be recorded. Default is 0. Enter a negative value to see zero length intervals");
+
+ po::positional_options_description pos;
+ pos.add("input-file", 1);
+
+ po::options_description all;
+ all.add(visible).add(hidden);
+
+ po::variables_map vm;
+ po::store(po::command_line_parser(argc, argv).
+ options(all).positional(pos).run(), vm);
+ po::notify(vm);
+
+ if (vm.count("help") || !vm.count("input-file")) {
+ std::cout << std::endl;
+ std::cout << "Compute the persistent homology with coefficient field Z/pZ \n";
+ std::cout << "of an Alpha complex defined on a set of input points.\n \n";
+ std::cout << "The output diagram contains one bar per line, written with the convention: \n";
+ std::cout << " p dim b d \n";
+ std::cout << "where dim is the dimension of the homological feature,\n";
+ std::cout << "b and d are respectively the birth and death of the feature and \n";
+ std::cout << "p is the characteristic of the field Z/pZ used for homology coefficients." << std::endl << std::endl;
+
+ std::cout << "Usage: " << argv[0] << " [options] input-file" << std::endl << std::endl;
+ std::cout << visible << std::endl;
+ std::abort();
+ }
+}
diff --git a/src/Persistent_cohomology/example/custom_persistence_sort.cpp b/src/Persistent_cohomology/example/custom_persistence_sort.cpp
new file mode 100644
index 00000000..64f2a4dc
--- /dev/null
+++ b/src/Persistent_cohomology/example/custom_persistence_sort.cpp
@@ -0,0 +1,137 @@
+/* This file is part of the Gudhi Library. The Gudhi library
+ * (Geometric Understanding in Higher Dimensions) is a generic C++
+ * library for computational topology.
+ *
+ * Author(s): Vincent Rouvreau
+ *
+ * Copyright (C) 2014 INRIA Saclay (France)
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include <CGAL/Epick_d.h>
+#include <CGAL/point_generators_d.h>
+#include <CGAL/algorithm.h>
+#include <CGAL/assertions.h>
+
+#include <gudhi/Alpha_complex.h>
+#include <gudhi/Persistent_cohomology.h>
+// to construct a simplex_tree from alpha complex
+#include <gudhi/Simplex_tree.h>
+
+#include <iostream>
+#include <iterator>
+#include <vector>
+#include <fstream> // for std::ofstream
+#include <algorithm> // for std::sort
+
+
+using Kernel = CGAL::Epick_d< CGAL::Dimension_tag<3> >;
+using Point = Kernel::Point_d;
+using Alpha_complex = Gudhi::alpha_complex::Alpha_complex<Kernel>;
+using Simplex_tree = Gudhi::Simplex_tree<>;
+using Persistent_cohomology = Gudhi::persistent_cohomology::Persistent_cohomology< Simplex_tree,
+ Gudhi::persistent_cohomology::Field_Zp >;
+
+std::vector<Point> random_points() {
+ // Instanciate a random point generator
+ CGAL::Random rng(0);
+
+ // Generate "points_number" random points in a vector
+ std::vector<Point> points;
+
+ // Generates 1000 random 3D points on a sphere of radius 4.0
+ CGAL::Random_points_on_sphere_d<Point> rand_outside(3, 4.0, rng);
+ CGAL::cpp11::copy_n(rand_outside, 1000, std::back_inserter(points));
+ // Generates 2000 random 3D points in a sphere of radius 3.0
+ CGAL::Random_points_in_ball_d<Point> rand_inside(3, 3.0, rng);
+ CGAL::cpp11::copy_n(rand_inside, 2000, std::back_inserter(points));
+
+ return points;
+}
+
+/*
+ * Compare two intervals by dimension, then by length.
+ */
+struct cmp_intervals_by_dim_then_length {
+ explicit cmp_intervals_by_dim_then_length(Simplex_tree * sc)
+ : sc_(sc) { }
+
+ template<typename Persistent_interval>
+ bool operator()(const Persistent_interval & p1, const Persistent_interval & p2) {
+ if (sc_->dimension(get < 0 > (p1)) == sc_->dimension(get < 0 > (p2)))
+ return (sc_->filtration(get < 1 > (p1)) - sc_->filtration(get < 0 > (p1))
+ > sc_->filtration(get < 1 > (p2)) - sc_->filtration(get < 0 > (p2)));
+ else
+ return (sc_->dimension(get < 0 > (p1)) > sc_->dimension(get < 0 > (p2)));
+ }
+ Simplex_tree* sc_;
+};
+
+int main(int argc, char **argv) {
+ std::vector<Point> points = random_points();
+
+ std::cout << "Points size=" << points.size() << std::endl;
+ // Alpha complex persistence computation from generated points
+ Alpha_complex alpha_complex_from_points(points);
+ std::cout << "alpha_complex_from_points" << std::endl;
+
+ Simplex_tree simplex;
+ std::cout << "simplex" << std::endl;
+ if (alpha_complex_from_points.create_complex(simplex, 0.6)) {
+ std::cout << "simplex" << std::endl;
+ // ----------------------------------------------------------------------------
+ // Display information about the alpha complex
+ // ----------------------------------------------------------------------------
+ std::cout << "Simplicial complex is of dimension " << simplex.dimension() <<
+ " - " << simplex.num_simplices() << " simplices - " <<
+ simplex.num_vertices() << " vertices." << std::endl;
+
+ // Sort the simplices in the order of the filtration
+ simplex.initialize_filtration();
+
+ std::cout << "Simplex_tree dim: " << simplex.dimension() << std::endl;
+
+ Persistent_cohomology pcoh(simplex);
+
+ // initializes the coefficient field for homology - Z/3Z
+ pcoh.init_coefficients(3);
+ pcoh.compute_persistent_cohomology(0.2);
+
+ // Custom sort and output persistence
+ cmp_intervals_by_dim_then_length cmp(&simplex);
+ auto persistent_pairs = pcoh.get_persistent_pairs();
+ std::sort(std::begin(persistent_pairs), std::end(persistent_pairs), cmp);
+ for (auto pair : persistent_pairs) {
+ std::cout << simplex.dimension(get<0>(pair)) << " "
+ << simplex.filtration(get<0>(pair)) << " "
+ << simplex.filtration(get<1>(pair)) << std::endl;
+ }
+
+ // Persistent Betti numbers
+ std::cout << "The persistent Betti numbers in interval [0.40, 0.41] are : ";
+ for (int dim = 0; dim < simplex.dimension(); dim++)
+ std::cout << "b" << dim << " = " << pcoh.persistent_betti_number(dim, 0.40, 0.41) << " ; ";
+ std::cout << std::endl;
+
+ // Betti numbers
+ std::vector<int> betti_numbers = pcoh.betti_numbers();
+ std::cout << "The Betti numbers are : ";
+ for (std::size_t i = 0; i < betti_numbers.size(); i++)
+ std::cout << "b" << i << " = " << betti_numbers[i] << " ; ";
+ std::cout << std::endl;
+ }
+ return 0;
+}
+
diff --git a/src/Persistent_cohomology/example/performance_rips_persistence.cpp b/src/Persistent_cohomology/example/performance_rips_persistence.cpp
index 0e912d57..b4d282ac 100644
--- a/src/Persistent_cohomology/example/performance_rips_persistence.cpp
+++ b/src/Persistent_cohomology/example/performance_rips_persistence.cpp
@@ -63,10 +63,11 @@ void timing_persistence(FilteredComplex & cpx
*/
int main(int argc, char * argv[]) {
std::chrono::time_point<std::chrono::system_clock> start, end;
- int enlapsed_sec;
+ int elapsed_sec;
+ {
- std::string filepoints = "../examples/Kl.txt";
- Filtration_value threshold = 0.3;
+ std::string filepoints = "../../../data/points/Kl.txt";
+ Filtration_value threshold = 0.27;
int dim_max = 3;
int p = 2;
int q = 1223;
@@ -81,11 +82,11 @@ int main(int argc, char * argv[]) {
Graph_t prox_graph = compute_proximity_graph(points, threshold
, euclidean_distance<Point_t>);
end = std::chrono::system_clock::now();
- enlapsed_sec = std::chrono::duration_cast<std::chrono::seconds>(end - start).count();
- std::cout << "Compute Rips graph in " << enlapsed_sec << " sec.\n";
+ elapsed_sec = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();
+ std::cout << "Compute Rips graph in " << elapsed_sec << " ms.\n";
// Construct the Rips complex in a Simplex Tree
- Simplex_tree<> st;
+ Simplex_tree<Simplex_tree_options_fast_persistence> st;
start = std::chrono::system_clock::now();
// insert the proximity graph in the simplex tree
@@ -94,8 +95,8 @@ int main(int argc, char * argv[]) {
st.expansion(dim_max);
end = std::chrono::system_clock::now();
- enlapsed_sec = std::chrono::duration_cast<std::chrono::seconds>(end - start).count();
- std::cout << "Compute Rips complex in " << enlapsed_sec << " sec.\n";
+ elapsed_sec = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();
+ std::cout << "Compute Rips complex in " << elapsed_sec << " ms.\n";
std::cout << " - dimension = " << st.dimension() << std::endl;
std::cout << " - number of simplices = " << st.num_simplices() << std::endl;
@@ -103,15 +104,26 @@ int main(int argc, char * argv[]) {
start = std::chrono::system_clock::now();
st.initialize_filtration();
end = std::chrono::system_clock::now();
- enlapsed_sec = std::chrono::duration_cast<std::chrono::seconds>(end - start).count();
- std::cout << "Order the simplices of the filtration in " << enlapsed_sec << " sec.\n";
+ elapsed_sec = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();
+ std::cout << "Order the simplices of the filtration in " << elapsed_sec << " ms.\n";
+
+ // Copy the keys inside the simplices
+ start = std::chrono::system_clock::now();
+ {
+ int count = 0;
+ for (auto sh : st.filtration_simplex_range())
+ st.assign_key(sh, count++);
+ }
+ end = std::chrono::system_clock::now();
+ elapsed_sec = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();
+ std::cout << "Copied the keys inside the simplices in " << elapsed_sec << " ms.\n";
// Convert the simplex tree into a hasse diagram
start = std::chrono::system_clock::now();
Hasse_complex<> hcpx(st);
end = std::chrono::system_clock::now();
- enlapsed_sec = std::chrono::duration_cast<std::chrono::seconds>(end - start).count();
- std::cout << "Convert the simplex tree into a Hasse diagram in " << enlapsed_sec << " sec.\n";
+ elapsed_sec = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();
+ std::cout << "Convert the simplex tree into a Hasse diagram in " << elapsed_sec << " ms.\n";
std::cout << "Timings when using a simplex tree: \n";
@@ -124,6 +136,11 @@ int main(int argc, char * argv[]) {
timing_persistence(hcpx, q);
timing_persistence(hcpx, p, q);
+ start = std::chrono::system_clock::now();
+ }
+ end = std::chrono::system_clock::now();
+ elapsed_sec = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();
+ std::cout << "Running the complex destructors in " << elapsed_sec << " ms.\n";
return 0;
}
@@ -132,19 +149,32 @@ void
timing_persistence(FilteredComplex & cpx
, int p) {
std::chrono::time_point<std::chrono::system_clock> start, end;
- int enlapsed_sec;
-
+ int elapsed_sec;
+ {
+ start = std::chrono::system_clock::now();
Persistent_cohomology< FilteredComplex, Field_Zp > pcoh(cpx);
+ end = std::chrono::system_clock::now();
+ elapsed_sec = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();
+ std::cout << " Initialize pcoh in " << elapsed_sec << " ms.\n";
// initializes the coefficient field for homology
+ start = std::chrono::system_clock::now();
pcoh.init_coefficients(p);
+ end = std::chrono::system_clock::now();
+ elapsed_sec = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();
+ std::cout << " Initialize the coefficient field in " << elapsed_sec << " ms.\n";
start = std::chrono::system_clock::now();
pcoh.compute_persistent_cohomology(INFINITY);
end = std::chrono::system_clock::now();
- enlapsed_sec = std::chrono::duration_cast<std::chrono::seconds>(end - start).count();
- std::cout << " Compute persistent homology in Z/" << p << "Z in " << enlapsed_sec << " sec.\n";
+ elapsed_sec = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();
+ std::cout << " Compute persistent homology in Z/" << p << "Z in " << elapsed_sec << " ms.\n";
+ start = std::chrono::system_clock::now();
+ }
+ end = std::chrono::system_clock::now();
+ elapsed_sec = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();
+ std::cout << " Run the persistence destructors in " << elapsed_sec << " ms.\n";
}
template< typename FilteredComplex>
@@ -153,11 +183,19 @@ timing_persistence(FilteredComplex & cpx
, int p
, int q) {
std::chrono::time_point<std::chrono::system_clock> start, end;
- int enlapsed_sec;
-
+ int elapsed_sec;
+ {
+ start = std::chrono::system_clock::now();
Persistent_cohomology< FilteredComplex, Multi_field > pcoh(cpx);
+ end = std::chrono::system_clock::now();
+ elapsed_sec = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();
+ std::cout << " Initialize pcoh in " << elapsed_sec << " ms.\n";
// initializes the coefficient field for homology
+ start = std::chrono::system_clock::now();
pcoh.init_coefficients(p, q);
+ end = std::chrono::system_clock::now();
+ elapsed_sec = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();
+ std::cout << " Initialize the coefficient field in " << elapsed_sec << " ms.\n";
// compute persistent homology, disgarding persistent features of life shorter than min_persistence
start = std::chrono::system_clock::now();
@@ -165,7 +203,12 @@ timing_persistence(FilteredComplex & cpx
pcoh.compute_persistent_cohomology(INFINITY);
end = std::chrono::system_clock::now();
- enlapsed_sec = std::chrono::duration_cast<std::chrono::seconds>(end - start).count();
+ elapsed_sec = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();
std::cout << " Compute multi-field persistent homology in all coefficient fields Z/pZ "
- << "with p in [" << p << ";" << q << "] in " << enlapsed_sec << " sec.\n";
+ << "with p in [" << p << ";" << q << "] in " << elapsed_sec << " ms.\n";
+ start = std::chrono::system_clock::now();
+ }
+ end = std::chrono::system_clock::now();
+ elapsed_sec = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();
+ std::cout << " Run the persistence destructors in " << elapsed_sec << " ms.\n";
}
diff --git a/src/Persistent_cohomology/example/periodic_alpha_complex_3d_persistence.cpp b/src/Persistent_cohomology/example/periodic_alpha_complex_3d_persistence.cpp
new file mode 100644
index 00000000..a199fea1
--- /dev/null
+++ b/src/Persistent_cohomology/example/periodic_alpha_complex_3d_persistence.cpp
@@ -0,0 +1,313 @@
+/* This file is part of the Gudhi Library. The Gudhi library
+ * (Geometric Understanding in Higher Dimensions) is a generic C++
+ * library for computational topology.
+ *
+ * Author(s): Vincent Rouvreau
+ *
+ * Copyright (C) 2014 INRIA Saclay (France)
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include <gudhi/Simplex_tree.h>
+#include <gudhi/Persistent_cohomology.h>
+#include <gudhi/Points_3D_off_io.h>
+#include <boost/variant.hpp>
+
+#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
+#include <CGAL/Periodic_3_Delaunay_triangulation_traits_3.h>
+#include <CGAL/Periodic_3_Delaunay_triangulation_3.h>
+#include <CGAL/Alpha_shape_3.h>
+#include <CGAL/iterator.h>
+
+#include <fstream>
+#include <cmath>
+#include <string>
+#include <tuple>
+#include <map>
+#include <utility>
+#include <list>
+#include <vector>
+
+// Traits
+using K = CGAL::Exact_predicates_inexact_constructions_kernel;
+using PK = CGAL::Periodic_3_Delaunay_triangulation_traits_3<K>;
+// Vertex type
+using DsVb = CGAL::Periodic_3_triangulation_ds_vertex_base_3<>;
+using Vb = CGAL::Triangulation_vertex_base_3<PK, DsVb>;
+using AsVb = CGAL::Alpha_shape_vertex_base_3<PK, Vb>;
+// Cell type
+using DsCb = CGAL::Periodic_3_triangulation_ds_cell_base_3<>;
+using Cb = CGAL::Triangulation_cell_base_3<PK, DsCb>;
+using AsCb = CGAL::Alpha_shape_cell_base_3<PK, Cb>;
+using Tds = CGAL::Triangulation_data_structure_3<AsVb, AsCb>;
+using P3DT3 = CGAL::Periodic_3_Delaunay_triangulation_3<PK, Tds>;
+using Alpha_shape_3 = CGAL::Alpha_shape_3<P3DT3>;
+using Point_3 = PK::Point_3;
+
+// filtration with alpha values needed type definition
+using Alpha_value_type = Alpha_shape_3::FT;
+using Object = CGAL::Object;
+using Dispatch = CGAL::Dispatch_output_iterator<
+ CGAL::cpp11::tuple<Object, Alpha_value_type>,
+ CGAL::cpp11::tuple<std::back_insert_iterator< std::vector<Object> >,
+ std::back_insert_iterator< std::vector<Alpha_value_type> > > >;
+using Cell_handle = Alpha_shape_3::Cell_handle;
+using Facet = Alpha_shape_3::Facet;
+using Edge_3 = Alpha_shape_3::Edge;
+using Vertex_list = std::list<Alpha_shape_3::Vertex_handle>;
+
+// gudhi type definition
+using ST = Gudhi::Simplex_tree<Gudhi::Simplex_tree_options_fast_persistence>;
+using Simplex_tree_vertex = ST::Vertex_handle;
+using Alpha_shape_simplex_tree_map = std::map<Alpha_shape_3::Vertex_handle, Simplex_tree_vertex >;
+using Alpha_shape_simplex_tree_pair = std::pair<Alpha_shape_3::Vertex_handle, Simplex_tree_vertex>;
+using Simplex_tree_vector_vertex = std::vector< Simplex_tree_vertex >;
+using Persistent_cohomology = Gudhi::persistent_cohomology::Persistent_cohomology<
+ ST, Gudhi::persistent_cohomology::Field_Zp >;
+
+Vertex_list from(const Cell_handle& ch) {
+ Vertex_list the_list;
+ for (auto i = 0; i < 4; i++) {
+#ifdef DEBUG_TRACES
+ std::cout << "from cell[" << i << "]=" << ch->vertex(i)->point() << std::endl;
+#endif // DEBUG_TRACES
+ the_list.push_back(ch->vertex(i));
+ }
+ return the_list;
+}
+
+Vertex_list from(const Facet& fct) {
+ Vertex_list the_list;
+ for (auto i = 0; i < 4; i++) {
+ if (fct.second != i) {
+#ifdef DEBUG_TRACES
+ std::cout << "from facet=[" << i << "]" << fct.first->vertex(i)->point() << std::endl;
+#endif // DEBUG_TRACES
+ the_list.push_back(fct.first->vertex(i));
+ }
+ }
+ return the_list;
+}
+
+Vertex_list from(const Edge_3& edg) {
+ Vertex_list the_list;
+ for (auto i = 0; i < 4; i++) {
+ if ((edg.second == i) || (edg.third == i)) {
+#ifdef DEBUG_TRACES
+ std::cout << "from edge[" << i << "]=" << edg.first->vertex(i)->point() << std::endl;
+#endif // DEBUG_TRACES
+ the_list.push_back(edg.first->vertex(i));
+ }
+ }
+ return the_list;
+}
+
+Vertex_list from(const Alpha_shape_3::Vertex_handle& vh) {
+ Vertex_list the_list;
+#ifdef DEBUG_TRACES
+ std::cout << "from vertex=" << vh->point() << std::endl;
+#endif // DEBUG_TRACES
+ the_list.push_back(vh);
+ return the_list;
+}
+
+void usage(char * const progName) {
+ std::cerr << "Usage: " << progName <<
+ " path_to_file_graph path_to_iso_cuboid_3_file coeff_field_characteristic[integer > 0] min_persistence[float >= -1.0]\n";
+ exit(-1);
+}
+
+int main(int argc, char * const argv[]) {
+ // program args management
+ if (argc != 5) {
+ std::cerr << "Error: Number of arguments (" << argc << ") is not correct\n";
+ usage(argv[0]);
+ }
+
+ int coeff_field_characteristic = 0;
+ int returnedScanValue = sscanf(argv[3], "%d", &coeff_field_characteristic);
+ if ((returnedScanValue == EOF) || (coeff_field_characteristic <= 0)) {
+ std::cerr << "Error: " << argv[3] << " is not correct\n";
+ usage(argv[0]);
+ }
+
+ Filtration_value min_persistence = 0.0;
+ returnedScanValue = sscanf(argv[4], "%lf", &min_persistence);
+ if ((returnedScanValue == EOF) || (min_persistence < -1.0)) {
+ std::cerr << "Error: " << argv[4] << " is not correct\n";
+ usage(argv[0]);
+ }
+
+ // Read points from file
+ std::string offInputFile(argv[1]);
+ // Read the OFF file (input file name given as parameter) and triangulate points
+ Gudhi::Points_3D_off_reader<Point_3> off_reader(offInputFile);
+ // Check the read operation was correct
+ if (!off_reader.is_valid()) {
+ std::cerr << "Unable to read file " << offInputFile << std::endl;
+ usage(argv[0]);
+ }
+
+ // Read iso_cuboid_3 information from file
+ std::ifstream iso_cuboid_str(argv[2]);
+ double x_min, y_min, z_min, x_max, y_max, z_max;
+ if (iso_cuboid_str.good()) {
+ iso_cuboid_str >> x_min >> y_min >> z_min >> x_max >> y_max >> z_max;
+ } else {
+ std::cerr << "Unable to read file " << argv[2] << std::endl;
+ usage(argv[0]);
+ }
+
+ // Retrieve the triangulation
+ std::vector<Point_3> lp = off_reader.get_point_cloud();
+
+ // Define the periodic cube
+ P3DT3 pdt(PK::Iso_cuboid_3(x_min, y_min, z_min, x_max, y_max, z_max));
+ // Heuristic for inserting large point sets (if pts is reasonably large)
+ pdt.insert(lp.begin(), lp.end(), true);
+ // As pdt won't be modified anymore switch to 1-sheeted cover if possible
+ if (pdt.is_triangulation_in_1_sheet()) pdt.convert_to_1_sheeted_covering();
+ std::cout << "Periodic Delaunay computed." << std::endl;
+
+ // alpha shape construction from points. CGAL has a strange behavior in REGULARIZED mode. This is the default mode
+ // Maybe need to set it to GENERAL mode
+ Alpha_shape_3 as(pdt, 0, Alpha_shape_3::GENERAL);
+
+ // filtration with alpha values from alpha shape
+ std::vector<Object> the_objects;
+ std::vector<Alpha_value_type> the_alpha_values;
+
+ Dispatch disp = CGAL::dispatch_output<Object, Alpha_value_type>(std::back_inserter(the_objects),
+ std::back_inserter(the_alpha_values));
+
+ as.filtration_with_alpha_values(disp);
+#ifdef DEBUG_TRACES
+ std::cout << "filtration_with_alpha_values returns : " << the_objects.size() << " objects" << std::endl;
+#endif // DEBUG_TRACES
+
+ Alpha_shape_3::size_type count_vertices = 0;
+ Alpha_shape_3::size_type count_edges = 0;
+ Alpha_shape_3::size_type count_facets = 0;
+ Alpha_shape_3::size_type count_cells = 0;
+
+ // Loop on objects vector
+ Vertex_list vertex_list;
+ ST simplex_tree;
+ Alpha_shape_simplex_tree_map map_cgal_simplex_tree;
+ std::vector<Alpha_value_type>::iterator the_alpha_value_iterator = the_alpha_values.begin();
+ int dim_max = 0;
+ Filtration_value filtration_max = 0.0;
+ for (auto object_iterator : the_objects) {
+ // Retrieve Alpha shape vertex list from object
+ if (const Cell_handle * cell = CGAL::object_cast<Cell_handle>(&object_iterator)) {
+ vertex_list = from(*cell);
+ count_cells++;
+ if (dim_max < 3) {
+ // Cell is of dim 3
+ dim_max = 3;
+ }
+ } else if (const Facet * facet = CGAL::object_cast<Facet>(&object_iterator)) {
+ vertex_list = from(*facet);
+ count_facets++;
+ if (dim_max < 2) {
+ // Facet is of dim 2
+ dim_max = 2;
+ }
+ } else if (const Edge_3 * edge = CGAL::object_cast<Edge_3>(&object_iterator)) {
+ vertex_list = from(*edge);
+ count_edges++;
+ if (dim_max < 1) {
+ // Edge_3 is of dim 1
+ dim_max = 1;
+ }
+ } else if (const Alpha_shape_3::Vertex_handle * vertex =
+ CGAL::object_cast<Alpha_shape_3::Vertex_handle>(&object_iterator)) {
+ count_vertices++;
+ vertex_list = from(*vertex);
+ }
+ // Construction of the vector of simplex_tree vertex from list of alpha_shapes vertex
+ Simplex_tree_vector_vertex the_simplex_tree;
+ for (auto the_alpha_shape_vertex : vertex_list) {
+ Alpha_shape_simplex_tree_map::iterator the_map_iterator = map_cgal_simplex_tree.find(the_alpha_shape_vertex);
+ if (the_map_iterator == map_cgal_simplex_tree.end()) {
+ // alpha shape not found
+ Simplex_tree_vertex vertex = map_cgal_simplex_tree.size();
+#ifdef DEBUG_TRACES
+ std::cout << "vertex [" << the_alpha_shape_vertex->point() << "] not found - insert " << vertex << std::endl;
+#endif // DEBUG_TRACES
+ the_simplex_tree.push_back(vertex);
+ map_cgal_simplex_tree.insert(Alpha_shape_simplex_tree_pair(the_alpha_shape_vertex, vertex));
+ } else {
+ // alpha shape found
+ Simplex_tree_vertex vertex = the_map_iterator->second;
+#ifdef DEBUG_TRACES
+ std::cout << "vertex [" << the_alpha_shape_vertex->point() << "] found in " << vertex << std::endl;
+#endif // DEBUG_TRACES
+ the_simplex_tree.push_back(vertex);
+ }
+ }
+ // Construction of the simplex_tree
+ Filtration_value filtr = /*std::sqrt*/(*the_alpha_value_iterator);
+#ifdef DEBUG_TRACES
+ std::cout << "filtration = " << filtr << std::endl;
+#endif // DEBUG_TRACES
+ if (filtr > filtration_max) {
+ filtration_max = filtr;
+ }
+ simplex_tree.insert_simplex(the_simplex_tree, filtr);
+ if (the_alpha_value_iterator != the_alpha_values.end())
+ ++the_alpha_value_iterator;
+ else
+ std::cout << "This shall not happen" << std::endl;
+ }
+ simplex_tree.set_filtration(filtration_max);
+ simplex_tree.set_dimension(dim_max);
+
+#ifdef DEBUG_TRACES
+ std::cout << "vertices \t\t" << count_vertices << std::endl;
+ std::cout << "edges \t\t" << count_edges << std::endl;
+ std::cout << "facets \t\t" << count_facets << std::endl;
+ std::cout << "cells \t\t" << count_cells << std::endl;
+
+
+ std::cout << "Information of the Simplex Tree: " << std::endl;
+ std::cout << " Number of vertices = " << simplex_tree.num_vertices() << " ";
+ std::cout << " Number of simplices = " << simplex_tree.num_simplices() << std::endl << std::endl;
+ std::cout << " Dimension = " << simplex_tree.dimension() << " ";
+ std::cout << " filtration = " << simplex_tree.filtration() << std::endl << std::endl;
+#endif // DEBUG_TRACES
+
+#ifdef DEBUG_TRACES
+ std::cout << "Iterator on vertices: " << std::endl;
+ for (auto vertex : simplex_tree.complex_vertex_range()) {
+ std::cout << vertex << " ";
+ }
+#endif // DEBUG_TRACES
+
+ // Sort the simplices in the order of the filtration
+ simplex_tree.initialize_filtration();
+
+ std::cout << "Simplex_tree dim: " << simplex_tree.dimension() << std::endl;
+ // Compute the persistence diagram of the complex
+ Persistent_cohomology pcoh(simplex_tree, true);
+ // initializes the coefficient field for homology
+ pcoh.init_coefficients(coeff_field_characteristic);
+
+ pcoh.compute_persistent_cohomology(min_persistence);
+
+ pcoh.output_diagram();
+
+ return 0;
+}
diff --git a/src/Persistent_cohomology/example/persistence_from_file.cpp b/src/Persistent_cohomology/example/persistence_from_file.cpp
index 8eb8d0f3..67235467 100644
--- a/src/Persistent_cohomology/example/persistence_from_file.cpp
+++ b/src/Persistent_cohomology/example/persistence_from_file.cpp
@@ -54,7 +54,7 @@ int main(int argc, char * argv[]) {
<< std::endl;
std::cout << " - p=" << p << " - min_persistence=" << min_persistence << std::endl;
- // Construct the Rips complex in a Simplex Tree
+ // Read the list of simplices from a file.
Simplex_tree<> simplex_tree;
std::ifstream simplex_tree_stream(simplex_tree_file);
diff --git a/src/Persistent_cohomology/example/plain_homology.cpp b/src/Persistent_cohomology/example/plain_homology.cpp
new file mode 100644
index 00000000..ae82c817
--- /dev/null
+++ b/src/Persistent_cohomology/example/plain_homology.cpp
@@ -0,0 +1,95 @@
+/* This file is part of the Gudhi Library. The Gudhi library
+ * (Geometric Understanding in Higher Dimensions) is a generic C++
+ * library for computational topology.
+ *
+ * Author(s): Marc Glisse
+ *
+ * Copyright (C) 2015 INRIA Saclay - Ile-de-France (France)
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include <gudhi/Simplex_tree.h>
+#include <gudhi/Persistent_cohomology.h>
+
+#include <iostream>
+#include <vector>
+#include <cstdint> // for std::uint8_t
+
+using namespace Gudhi;
+
+/* We could perfectly well use the default Simplex_tree<> (which uses
+ * Simplex_tree_options_full_featured), the following simply demonstrates
+ * how to save on storage by not storing a filtration value. */
+
+struct MyOptions : Simplex_tree_options_full_featured {
+ // Implicitly use 0 as filtration value for all simplices
+ static const bool store_filtration = false;
+ // The persistence algorithm needs this
+ static const bool store_key = true;
+ // I have few vertices
+ typedef short Vertex_handle;
+ // Maximum number of simplices to compute persistence is 2^8 - 1 = 255. One is reserved for null_key
+ typedef std::uint8_t Simplex_key;
+};
+typedef Simplex_tree<MyOptions> ST;
+
+int main() {
+ ST st;
+
+ /* Complex to build. */
+ /* 1 3 */
+ /* o---o */
+ /* /X\ / */
+ /* o---o o */
+ /* 2 0 4 */
+
+ const short triangle012[] = {0, 1, 2};
+ const short edge03[] = {0, 3};
+ const short edge13[] = {1, 3};
+ const short vertex4[] = {4};
+ st.insert_simplex_and_subfaces(triangle012);
+ st.insert_simplex_and_subfaces(edge03);
+ st.insert_simplex(edge13);
+ st.insert_simplex(vertex4);
+ // FIXME: Remove this line
+ st.set_dimension(2);
+
+ // Sort the simplices in the order of the filtration
+ st.initialize_filtration();
+
+ // Class for homology computation
+ persistent_cohomology::Persistent_cohomology<ST, persistent_cohomology::Field_Zp> pcoh(st);
+
+ // Initialize the coefficient field Z/2Z for homology
+ pcoh.init_coefficients(2);
+
+ // Compute the persistence diagram of the complex
+ pcoh.compute_persistent_cohomology();
+
+ // Print the result. The format is, on each line: 2 dim 0 inf
+ // where 2 represents the field, dim the dimension of the feature.
+ // 2 0 0 inf
+ // 2 0 0 inf
+ // 2 1 0 inf
+ // means that in Z/2Z-homology, the Betti numbers are b0=2 and b1=1.
+ pcoh.output_diagram();
+
+ // Print the Betti numbers are b0=2 and b1=1.
+ std::cout << std::endl;
+ std::cout << "The Betti numbers are : ";
+ for (int i = 0; i < st.dimension(); i++)
+ std::cout << "b" << i << " = " << pcoh.betti_number(i) << " ; ";
+ std::cout << std::endl;
+}
diff --git a/src/Persistent_cohomology/example/rips_multifield_persistence.cpp b/src/Persistent_cohomology/example/rips_multifield_persistence.cpp
index 5277bf7a..c5cd775d 100644
--- a/src/Persistent_cohomology/example/rips_multifield_persistence.cpp
+++ b/src/Persistent_cohomology/example/rips_multifield_persistence.cpp
@@ -68,7 +68,8 @@ int main(int argc, char * argv[]) {
, euclidean_distance<Point_t>);
// Construct the Rips complex in a Simplex Tree
- Simplex_tree<> st;
+ typedef Simplex_tree<Simplex_tree_options_fast_persistence> ST;
+ ST st;
// insert the proximity graph in the simplex tree
st.insert_graph(prox_graph);
// expand the graph until dimension dim_max
@@ -78,7 +79,7 @@ int main(int argc, char * argv[]) {
st.initialize_filtration();
// Compute the persistence diagram of the complex
- Persistent_cohomology< Simplex_tree<>, Multi_field > pcoh(st);
+ Persistent_cohomology<ST, Multi_field > pcoh(st);
// initializes the coefficient field for homology
pcoh.init_coefficients(min_p, max_p);
// compute persistent homology, disgarding persistent features of life shorter than min_persistence
diff --git a/src/Persistent_cohomology/example/rips_persistence.cpp b/src/Persistent_cohomology/example/rips_persistence.cpp
index 9b1ef42f..cab49395 100644
--- a/src/Persistent_cohomology/example/rips_persistence.cpp
+++ b/src/Persistent_cohomology/example/rips_persistence.cpp
@@ -30,6 +30,7 @@
#include <string>
#include <vector>
+#include <limits> // infinity
using namespace Gudhi;
using namespace Gudhi::persistent_cohomology;
@@ -65,7 +66,8 @@ int main(int argc, char * argv[]) {
, euclidean_distance<Point_t>);
// Construct the Rips complex in a Simplex Tree
- Simplex_tree<> st;
+ typedef Simplex_tree<Simplex_tree_options_fast_persistence> ST;
+ ST st;
// insert the proximity graph in the simplex tree
st.insert_graph(prox_graph);
// expand the graph until dimension dim_max
@@ -78,7 +80,7 @@ int main(int argc, char * argv[]) {
st.initialize_filtration();
// Compute the persistence diagram of the complex
- persistent_cohomology::Persistent_cohomology< Simplex_tree<>, Field_Zp > pcoh(st);
+ persistent_cohomology::Persistent_cohomology<ST, Field_Zp > pcoh(st);
// initializes the coefficient field for homology
pcoh.init_coefficients(p);
@@ -114,7 +116,7 @@ void program_options(int argc, char * argv[]
("help,h", "produce help message")
("output-file,o", po::value<std::string>(&filediag)->default_value(std::string()),
"Name of file in which the persistence diagram is written. Default print in std::cout")
- ("max-edge-length,r", po::value<Filtration_value>(&threshold)->default_value(0),
+ ("max-edge-length,r", po::value<Filtration_value>(&threshold)->default_value(std::numeric_limits<Filtration_value>::infinity()),
"Maximal length of an edge for the Rips complex construction.")
("cpx-dimension,d", po::value<int>(&dim_max)->default_value(1),
"Maximal dimension of the Rips complex we want to compute.")
diff --git a/src/Persistent_cohomology/example/rips_persistence_via_boundary_matrix.cpp b/src/Persistent_cohomology/example/rips_persistence_via_boundary_matrix.cpp
new file mode 100644
index 00000000..4c6656f5
--- /dev/null
+++ b/src/Persistent_cohomology/example/rips_persistence_via_boundary_matrix.cpp
@@ -0,0 +1,180 @@
+/* This file is part of the Gudhi Library. The Gudhi library
+ * (Geometric Understanding in Higher Dimensions) is a generic C++
+ * library for computational topology.
+ *
+ * Author(s): Clément Maria, Marc Glisse
+ *
+ * Copyright (C) 2014 INRIA Sophia Antipolis-Méditerranée (France),
+ * 2015 INRIA Saclay Île de France)
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include <gudhi/reader_utils.h>
+#include <gudhi/graph_simplicial_complex.h>
+#include <gudhi/distance_functions.h>
+#include <gudhi/Simplex_tree.h>
+#include <gudhi/Persistent_cohomology.h>
+#include <gudhi/Hasse_complex.h>
+
+#include <boost/program_options.hpp>
+
+#ifdef GUDHI_USE_TBB
+#include <tbb/task_scheduler_init.h>
+#endif
+
+#include <string>
+#include <vector>
+
+////////////////////////////////////////////////////////////////
+// //
+// WARNING: persistence computation itself is not parallel, //
+// and this uses more memory than rips_persistence. //
+// //
+////////////////////////////////////////////////////////////////
+
+using namespace Gudhi;
+using namespace Gudhi::persistent_cohomology;
+
+typedef int Vertex_handle;
+typedef double Filtration_value;
+
+void program_options(int argc, char * argv[]
+ , std::string & filepoints
+ , std::string & filediag
+ , Filtration_value & threshold
+ , int & dim_max
+ , int & p
+ , Filtration_value & min_persistence);
+
+int main(int argc, char * argv[]) {
+ std::string filepoints;
+ std::string filediag;
+ Filtration_value threshold;
+ int dim_max;
+ int p;
+ Filtration_value min_persistence;
+
+ program_options(argc, argv, filepoints, filediag, threshold, dim_max, p, min_persistence);
+
+ // Extract the points from the file filepoints
+ typedef std::vector<double> Point_t;
+ std::vector< Point_t > points;
+ read_points(filepoints, points);
+
+ // Compute the proximity graph of the points
+ Graph_t prox_graph = compute_proximity_graph(points, threshold
+ , euclidean_distance<Point_t>);
+
+ // Construct the Rips complex in a Simplex Tree
+ Simplex_tree<>& st = *new Simplex_tree<>;
+ // insert the proximity graph in the simplex tree
+ st.insert_graph(prox_graph);
+ // expand the graph until dimension dim_max
+ st.expansion(dim_max);
+
+ std::cout << "The complex contains " << st.num_simplices() << " simplices \n";
+ std::cout << " and has dimension " << st.dimension() << " \n";
+
+#ifdef GUDHI_USE_TBB
+ // Unnecessary, but clarifies which operations are parallel.
+ tbb::task_scheduler_init ts;
+#endif
+
+ // Sort the simplices in the order of the filtration
+ st.initialize_filtration();
+ int count = 0;
+ for (auto sh : st.filtration_simplex_range())
+ st.assign_key(sh, count++);
+
+ // Convert to a more convenient representation.
+ Hasse_complex<> hcpx(st);
+
+#ifdef GUDHI_USE_TBB
+ ts.terminate();
+#endif
+
+ // Free some space.
+ delete &st;
+
+ // Compute the persistence diagram of the complex
+ persistent_cohomology::Persistent_cohomology< Hasse_complex<>, Field_Zp > pcoh(hcpx);
+ // initializes the coefficient field for homology
+ pcoh.init_coefficients(p);
+
+ pcoh.compute_persistent_cohomology(min_persistence);
+
+ // Output the diagram in filediag
+ if (filediag.empty()) {
+ pcoh.output_diagram();
+ } else {
+ std::ofstream out(filediag);
+ pcoh.output_diagram(out);
+ out.close();
+ }
+}
+
+void program_options(int argc, char * argv[]
+ , std::string & filepoints
+ , std::string & filediag
+ , Filtration_value & threshold
+ , int & dim_max
+ , int & p
+ , Filtration_value & min_persistence) {
+ namespace po = boost::program_options;
+ po::options_description hidden("Hidden options");
+ hidden.add_options()
+ ("input-file", po::value<std::string>(&filepoints),
+ "Name of file containing a point set. Format is one point per line: X1 ... Xd ");
+
+ po::options_description visible("Allowed options", 100);
+ visible.add_options()
+ ("help,h", "produce help message")
+ ("output-file,o", po::value<std::string>(&filediag)->default_value(std::string()),
+ "Name of file in which the persistence diagram is written. Default print in std::cout")
+ ("max-edge-length,r", po::value<Filtration_value>(&threshold)->default_value(0),
+ "Maximal length of an edge for the Rips complex construction.")
+ ("cpx-dimension,d", po::value<int>(&dim_max)->default_value(1),
+ "Maximal dimension of the Rips complex we want to compute.")
+ ("field-charac,p", po::value<int>(&p)->default_value(11),
+ "Characteristic p of the coefficient field Z/pZ for computing homology.")
+ ("min-persistence,m", po::value<Filtration_value>(&min_persistence),
+ "Minimal lifetime of homology feature to be recorded. Default is 0. Enter a negative value to see zero length intervals");
+
+ po::positional_options_description pos;
+ pos.add("input-file", 1);
+
+ po::options_description all;
+ all.add(visible).add(hidden);
+
+ po::variables_map vm;
+ po::store(po::command_line_parser(argc, argv).
+ options(all).positional(pos).run(), vm);
+ po::notify(vm);
+
+ if (vm.count("help") || !vm.count("input-file")) {
+ std::cout << std::endl;
+ std::cout << "Compute the persistent homology with coefficient field Z/pZ \n";
+ std::cout << "of a Rips complex defined on a set of input points.\n \n";
+ std::cout << "The output diagram contains one bar per line, written with the convention: \n";
+ std::cout << " p dim b d \n";
+ std::cout << "where dim is the dimension of the homological feature,\n";
+ std::cout << "b and d are respectively the birth and death of the feature and \n";
+ std::cout << "p is the characteristic of the field Z/pZ used for homology coefficients." << std::endl << std::endl;
+
+ std::cout << "Usage: " << argv[0] << " [options] input-file" << std::endl << std::endl;
+ std::cout << visible << std::endl;
+ std::abort();
+ }
+}
diff --git a/src/Persistent_cohomology/include/gudhi/Persistent_cohomology.h b/src/Persistent_cohomology/include/gudhi/Persistent_cohomology.h
index d096792f..b31df6a4 100644
--- a/src/Persistent_cohomology/include/gudhi/Persistent_cohomology.h
+++ b/src/Persistent_cohomology/include/gudhi/Persistent_cohomology.h
@@ -27,7 +27,6 @@
#include <gudhi/Persistent_cohomology/Field_Zp.h>
#include <gudhi/Simple_object_pool.h>
-#include <boost/tuple/tuple.hpp>
#include <boost/intrusive/set.hpp>
#include <boost/pending/disjoint_sets.hpp>
#include <boost/intrusive/list.hpp>
@@ -42,154 +41,16 @@
#include <tuple>
#include <algorithm>
#include <string>
+#include <stdexcept> // for std::out_of_range
namespace Gudhi {
namespace persistent_cohomology {
-/** \defgroup persistent_cohomology Persistent Cohomology
- *
-
- Computation of persistent cohomology using the algorithm of
- \cite DBLP:journals/dcg/SilvaMV11 and \cite DBLP:journals/corr/abs-1208-5018
- and the Compressed Annotation Matrix
- implementation of \cite DBLP:conf/esa/BoissonnatDM13
-
- The theory of homology consists in attaching to a topological space a sequence of
- (homology) groups,
- capturing global topological features
- like connected components, holes, cavities, etc. Persistent homology studies the evolution
- -- birth, life and death -- of
- these features when the topological space is changing. Consequently, the theory is essentially
- composed of three elements:
- topological spaces, their homology groups and an evolution scheme.
-
- The theory of homology consists in attaching to a topological space a sequence of
- (homology) groups,
- capturing global topological features
- like connected components, holes, cavities, etc. Persistent homology studies the evolution
- -- birth, life and death -- of
- these features when the topological space is changing. Consequently, the theory is essentially
- composed of three elements:
- topological spaces, their homology groups and an evolution scheme.
-
- <DT>Topological Spaces:</DT>
- Topological spaces are represented by simplicial complexes.
- Let \f$V = \{1, \cdots ,|V|\}\f$ be a set of <EM>vertices</EM>.
- A <EM>simplex</EM> \f$\sigma\f$ is a subset of vertices
- \f$\sigma \subseteq V\f$. A <EM>simplicial complex</EM> \f$\mathbf{K}\f$
- on \f$V\f$ is a collection of simplices \f$\{\sigma\}\f$,
- \f$\sigma \subseteq V\f$, such that \f$\tau \subseteq \sigma \in \mathbf{K}
- \Rightarrow \tau \in \mathbf{K}\f$. The dimension \f$n=|\sigma|-1\f$ of \f$\sigma\f$
- is its number of elements minus 1. A <EM>filtration</EM> of a simplicial complex is
- a function \f$f:\mathbf{K} \rightarrow \mathbb{R}\f$ satisfying \f$f(\tau)\leq
- f(\sigma)\f$ whenever \f$\tau \subseteq \sigma\f$.
-
- We define the concept FilteredComplex which enumerates the requirements for a class
- to represent a filtered complex from which persistent homology may be computed.
- We use the vocabulary of simplicial complexes, but the concept
- is valid for any type of cell complex. The main requirements
- are the definition of:
- \li type <CODE>Indexing_tag</CODE>, which is a model of the concept
- <CODE>IndexingTag</CODE>,
- describing the nature of the indexing scheme,
- \li type Simplex_handle to manipulate simplices,
- \li method <CODE>int dimension(Simplex_handle)</CODE> returning
- the dimension of a simplex,
- \li type and method <CODE>Boundary_simplex_range
- boundary_simplex_range(Simplex_handle)</CODE> that returns
- a range giving access to the codimension 1 subsimplices of the
- input simplex, as-well-as the coefficients \f$(-1)^i\f$ in the
- definition of the operator \f$\partial\f$. The iterators have
- value type <CODE>Simplex_handle</CODE>,
- \li type and method
- <CODE>Filtration_simplex_range filtration_simplex_range ()</CODE>
- that returns a range giving
- access to all the simplices of the complex read in the order
- assigned by the indexing scheme,
- \li type and method
- <CODE>Filtration_value filtration (Simplex_handle)</CODE> that returns the value of
- the filtration on the simplex represented by the handle.
-
- <DT>Homology:</DT>
- For a ring \f$\mathcal{R}\f$, the group of <EM>n-chains</EM>,
- denoted \f$\mathbf{C}_n(\mathbf{K},\mathcal{R})\f$, of \f$\mathbf{K}\f$ is the
- group of formal sums of
- n-simplices with \f$\mathcal{R}\f$ coefficients. The <EM>boundary operator</EM> is a
- linear operator
- \f$\partial_n: \mathbf{C}_n(\mathbf{K},\mathcal{R}) \rightarrow \mathbf{C}_{n-1}(\mathbf{K},\mathcal{R})\f$
- such that \f$\partial_n \sigma = \partial_n [v_0, \cdots , v_n] =
- \sum_{i=0}^n (-1)^{i}[v_0,\cdots ,\widehat{v_i}, \cdots,v_n]\f$,
- where \f$\widehat{v_i}\f$ means \f$v_i\f$ is omitted from the list. The chain
- groups form a sequence:
-
- \f[\cdots \ \ \mathbf{C}_n(\mathbf{K},\mathcal{R}) \xrightarrow{\ \partial_n\ } \mathbf{C}_{n-1}(\mathbf{K},\mathcal{R})
- \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\ \partial_2 \ }
- \mathbf{C}_1(\mathbf{K},\mathcal{R}) \xrightarrow{\ \partial_1 \ } \mathbf{C}_0(\mathbf{K},\mathcal{R}) \f]
-
- of finitely many groups \f$\mathbf{C}_n(\mathbf{K},\mathcal{R})\f$ and homomorphisms
- \f$\partial_n\f$, indexed by the dimension \f$n \geq 0\f$.
- The boundary operators satisfy the property \f$\partial_n \circ \partial_{n+1}=0\f$
- for every \f$n > 0\f$
- and we define the homology groups:
-
- \f[\mathbf{H}_n(\mathbf{K},\mathcal{R}) = \ker \partial_n / \mathrm{im} \ \partial_{n+1}\f]
-
- We refer to \cite Munkres-elementsalgtop1984 for an introduction to homology
- theory and to \cite DBLP:books/daglib/0025666 for an introduction to persistent homology.
-
- <DT>Indexing Scheme:</DT>
- "Changing" a simplicial complex consists in applying a simplicial map.
- An <EM>indexing scheme</EM> is a directed graph together with a traversal
- order, such that two
- consecutive nodes in the graph are connected by an arrow (either forward or backward).
- The nodes represent simplicial complexes and the directed edges simplicial maps.
-
- From the computational point of view, there are two types of indexing schemes of
- interest
- in persistent homology: <EM>linear</EM> ones
- \f$\bullet \longrightarrow \bullet \longrightarrow \cdots \longrightarrow \bullet
- \longrightarrow \bullet\f$
- in persistent homology \cite DBLP:journals/dcg/ZomorodianC05 ,
- and <EM>zigzag</EM> ones
- \f$\bullet \longrightarrow \bullet \longleftarrow \cdots
- \longrightarrow \bullet
- \longleftarrow \bullet \f$ in zigzag persistent
- homology \cite DBLP:journals/focm/CarlssonS10.
- These indexing schemes have a natural left-to-right traversal order, and we
- describe them with ranges and iterators.
- In the current release of the Gudhi library, only the linear case is implemented.
-
- In the following, we consider the case where the indexing scheme is induced
- by a filtration.
- Ordering the simplices
- by increasing filtration values (breaking ties so as a simplex appears after
- its subsimplices of same filtration value) provides an indexing scheme.
-
-\section Examples
- We provide several example files: run these examples with -h for details on their use, and read the README file.
-
-\li <CODE>rips_persistence.cpp</CODE> computes the Rips complex of a point cloud and its persistence diagram.
-
-\li <CODE>rips_multifield_persistence.cpp</CODE> computes the Rips complex of a point cloud and its persistence diagram
-with a family of field coefficients.
-
-\li <CODE>performance_rips_persistence.cpp</CODE> provides timings for the construction of the Rips complex on a set of
-points sampling a Klein bottle in \f$\mathbb{R}^5\f$ with a simplex tree, its conversion to a
-Hasse diagram and the computation of persistent homology and multi-field persistent homology for the
-different representations.
-
-
-
- \author Clément Maria
- \version 1.0
- \date 2014
- \copyright GNU General Public License v3.
- @{
- */
-
/** \brief Computes the persistent cohomology of a filtered complex.
*
+ * \ingroup persistent_cohomology
+ *
* The computation is implemented with a Compressed Annotation Matrix
* (CAM)\cite DBLP:conf/esa/BoissonnatDM13,
* and is adapted to the computation of Multi-Field Persistent Homology (MF)
@@ -198,8 +59,8 @@ different representations.
* \implements PersistentHomology
*
*/
-// Memory allocation policy: classic, use a mempool, etc.*/
-template<class FilteredComplex, class CoefficientField> // to do mem allocation policy: classic, mempool, etc.
+// TODO(CM): Memory allocation policy: classic, use a mempool, etc.
+template<class FilteredComplex, class CoefficientField>
class Persistent_cohomology {
public:
typedef FilteredComplex Complex_ds;
@@ -208,7 +69,7 @@ class Persistent_cohomology {
typedef typename Complex_ds::Simplex_handle Simplex_handle;
typedef typename Complex_ds::Filtration_value Filtration_value;
typedef typename CoefficientField::Element Arith_element;
-// Compressed Annotation Matrix types:
+ // Compressed Annotation Matrix types:
// Column type
typedef Persistent_cohomology_column<Simplex_key, Arith_element> Column; // contains 1 set_hook
// Cell type
@@ -220,15 +81,16 @@ class Persistent_cohomology {
typedef boost::intrusive::set<Column,
boost::intrusive::constant_time_size<false> > Cam;
-// Sparse column type for the annotation of the boundary of an element.
+ // Sparse column type for the annotation of the boundary of an element.
typedef std::vector<std::pair<Simplex_key, Arith_element> > A_ds_type;
-// Persistent interval type. The Arith_element field is used for the multi-field framework.
- typedef boost::tuple<Simplex_handle, Simplex_handle, Arith_element> Persistent_interval;
+ // Persistent interval type. The Arith_element field is used for the multi-field framework.
+ typedef std::tuple<Simplex_handle, Simplex_handle, Arith_element> Persistent_interval;
/** \brief Initializes the Persistent_cohomology class.
*
* @param[in] cpx Complex for which the persistent homology is computed.
- cpx is a model of FilteredComplex
+ * cpx is a model of FilteredComplex
+ * @exception std::out_of_range In case the number of simplices is more than Simplex_key type numeric limit.
*/
explicit Persistent_cohomology(Complex_ds& cpx)
: cpx_(&cpx),
@@ -246,6 +108,10 @@ class Persistent_cohomology {
interval_length_policy(&cpx, 0),
column_pool_(), // memory pools for the CAM
cell_pool_() {
+ if (cpx_->num_simplices() > std::numeric_limits<Simplex_key>::max()) {
+ // num_simplices must be strictly lower than the limit, because a value is reserved for null_key.
+ throw std::out_of_range ("The number of simplices is more than Simplex_key type numeric limit.");
+ }
Simplex_key idx_fil = 0;
for (auto sh : cpx_->filtration_simplex_range()) {
cpx_->assign_key(sh, idx_fil);
@@ -257,7 +123,7 @@ class Persistent_cohomology {
/** \brief Initializes the Persistent_cohomology class.
*
* @param[in] cpx Complex for which the persistent homology is compiuted.
- cpx is a model of FilteredComplex
+ * cpx is a model of FilteredComplex
*
* @param[in] persistence_dim_max if true, the persistent homology for the maximal dimension in the
* complex is computed. If false, it is ignored. Default is false.
@@ -346,7 +212,7 @@ class Persistent_cohomology {
persistent_pairs_.emplace_back(
cpx_->simplex(zero_idx.second), cpx_->null_simplex(), coeff_field_.characteristic());
}
-// Compute infinite interval of dimension > 0
+ // Compute infinite interval of dimension > 0
for (auto cocycle : transverse_idx_) {
persistent_pairs_.emplace_back(
cpx_->simplex(cocycle.first), cpx_->null_simplex(), cocycle.second.characteristics_);
@@ -431,9 +297,12 @@ class Persistent_cohomology {
std::map<Simplex_key, Arith_element> & map_a_ds, Simplex_handle sigma,
int dim_sigma) {
// traverses the boundary of sigma, keeps track of the annotation vectors,
- // with multiplicity, in a map.
- std::map<Column *, int> annotations_in_boundary;
- std::pair<typename std::map<Column *, int>::iterator, bool> result_insert_bound;
+ // with multiplicity. We used to sum the coefficients directly in
+ // annotations_in_boundary by using a map, we now do it later.
+ typedef std::pair<Column *, int> annotation_t;
+ // Danger: not thread-safe!
+ static std::vector<annotation_t> annotations_in_boundary;
+ annotations_in_boundary.clear();
int sign = 1 - 2 * (dim_sigma % 2); // \in {-1,1} provides the sign in the
// alternate sum in the boundary.
Simplex_key key;
@@ -445,22 +314,29 @@ class Persistent_cohomology {
// Find its annotation vector
curr_col = ds_repr_[dsets_.find_set(key)];
if (curr_col != NULL) { // and insert it in annotations_in_boundary with multyiplicative factor "sign".
- result_insert_bound = annotations_in_boundary.insert(std::pair<Column *, int>(curr_col, sign));
- if (!(result_insert_bound.second)) {
- result_insert_bound.first->second += sign;
- }
+ annotations_in_boundary.emplace_back(curr_col, sign);
}
}
sign = -sign;
}
+ // Place identical annotations consecutively so we can easily sum their multiplicities.
+ std::sort(annotations_in_boundary.begin(), annotations_in_boundary.end(),
+ [](annotation_t const& a, annotation_t const& b) { return a.first < b.first; });
+
// Sum the annotations with multiplicity, using a map<key,coeff>
// to represent a sparse vector.
std::pair<typename std::map<Simplex_key, Arith_element>::iterator, bool> result_insert_a_ds;
- for (auto ann_ref : annotations_in_boundary) {
- if (ann_ref.second != coeff_field_.additive_identity()) { // For all columns in the boundary,
- for (auto cell_ref : ann_ref.first->col_) { // insert every cell in map_a_ds with multiplicity
- Arith_element w_y = coeff_field_.times(cell_ref.coefficient_, ann_ref.second); // coefficient * multiplicity
+ for (auto ann_it = annotations_in_boundary.begin(); ann_it != annotations_in_boundary.end(); /**/) {
+ Column* col = ann_it->first;
+ int mult = ann_it->second;
+ while (++ann_it != annotations_in_boundary.end() && ann_it->first == col) {
+ mult += ann_it->second;
+ }
+ // The following test is just a heuristic, it is not required, and it is fine that is misses p == 0.
+ if (mult != coeff_field_.additive_identity()) { // For all columns in the boundary,
+ for (auto cell_ref : col->col_) { // insert every cell in map_a_ds with multiplicity
+ Arith_element w_y = coeff_field_.times(cell_ref.coefficient_, mult); // coefficient * multiplicity
if (w_y != coeff_field_.additive_identity()) { // if != 0
result_insert_a_ds = map_a_ds.insert(std::pair<Simplex_key, Arith_element>(cell_ref.key_, w_y));
@@ -696,7 +572,6 @@ class Persistent_cohomology {
* feature exists in homology with Z/piZ coefficients.
*/
void output_diagram(std::ostream& ostream = std::cout) {
-
cmp_intervals_by_length cmp(cpx_);
std::sort(std::begin(persistent_pairs_), std::end(persistent_pairs_), cmp);
bool has_infinity = std::numeric_limits<Filtration_value>::has_infinity;
@@ -724,12 +599,105 @@ class Persistent_cohomology {
}
}
+ /** @brief Returns Betti numbers.
+ * @return A vector of Betti numbers.
+ */
+ std::vector<int> betti_numbers() const {
+ // Init Betti numbers vector with zeros until Simplicial complex dimension
+ std::vector<int> betti_numbers(cpx_->dimension(), 0);
+
+ for (auto pair : persistent_pairs_) {
+ // Count never ended persistence intervals
+ if (cpx_->null_simplex() == get<1>(pair)) {
+ // Increment corresponding betti number
+ betti_numbers[cpx_->dimension(get<0>(pair))] += 1;
+ }
+ }
+ return betti_numbers;
+ }
+
+ /** @brief Returns the Betti number of the dimension passed by parameter.
+ * @param[in] dimension The Betti number dimension to get.
+ * @return Betti number of the given dimension
+ *
+ */
+ int betti_number(int dimension) const {
+ int betti_number = 0;
+
+ for (auto pair : persistent_pairs_) {
+ // Count never ended persistence intervals
+ if (cpx_->null_simplex() == get<1>(pair)) {
+ if (cpx_->dimension(get<0>(pair)) == dimension) {
+ // Increment betti number found
+ ++betti_number;
+ }
+ }
+ }
+ return betti_number;
+ }
+
+ /** @brief Returns the persistent Betti numbers.
+ * @param[in] from The persistence birth limit to be added in the number \f$(persistent birth \leq from)\f$.
+ * @param[in] to The persistence death limit to be added in the number \f$(persistent death > to)\f$.
+ * @return A vector of persistent Betti numbers.
+ */
+ std::vector<int> persistent_betti_numbers(Filtration_value from, Filtration_value to) const {
+ // Init Betti numbers vector with zeros until Simplicial complex dimension
+ std::vector<int> betti_numbers(cpx_->dimension(), 0);
+
+ for (auto pair : persistent_pairs_) {
+ // Count persistence intervals that covers the given interval
+ // null_simplex test : if the function is called with to=+infinity, we still get something useful. And it will
+ // still work if we change the complex filtration function to reject null simplices.
+ if (cpx_->filtration(get<0>(pair)) <= from &&
+ (get<1>(pair) == cpx_->null_simplex() || cpx_->filtration(get<1>(pair)) > to)) {
+ // Increment corresponding betti number
+ betti_numbers[cpx_->dimension(get<0>(pair))] += 1;
+ }
+ }
+ return betti_numbers;
+ }
+
+ /** @brief Returns the persistent Betti number of the dimension passed by parameter.
+ * @param[in] dimension The Betti number dimension to get.
+ * @param[in] from The persistence birth limit to be added in the number \f$(persistent birth \leq from)\f$.
+ * @param[in] to The persistence death limit to be added in the number \f$(persistent death > to)\f$.
+ * @return Persistent Betti number of the given dimension
+ */
+ int persistent_betti_number(int dimension, Filtration_value from, Filtration_value to) const {
+ int betti_number = 0;
+
+ for (auto pair : persistent_pairs_) {
+ // Count persistence intervals that covers the given interval
+ // null_simplex test : if the function is called with to=+infinity, we still get something useful. And it will
+ // still work if we change the complex filtration function to reject null simplices.
+ if (cpx_->filtration(get<0>(pair)) <= from &&
+ (get<1>(pair) == cpx_->null_simplex() || cpx_->filtration(get<1>(pair)) > to)) {
+ if (cpx_->dimension(get<0>(pair)) == dimension) {
+ // Increment betti number found
+ ++betti_number;
+ }
+ }
+ }
+ return betti_number;
+ }
+
+ /** @brief Returns the persistent pairs.
+ * @return Persistent pairs
+ *
+ */
+ const std::vector<Persistent_interval>& get_persistent_pairs() const {
+ return persistent_pairs_;
+ }
+
private:
/*
* Structure representing a cocycle.
*/
struct cocycle {
- cocycle() {
+ cocycle()
+ : row_(nullptr),
+ characteristics_() {
}
cocycle(Arith_element characteristics, Hcell * row)
: row_(row),
@@ -770,8 +738,6 @@ class Persistent_cohomology {
Simple_object_pool<Cell> cell_pool_;
};
-/** @} */ // end defgroup persistent_cohomology
-
} // namespace persistent_cohomology
} // namespace Gudhi
diff --git a/src/Persistent_cohomology/include/gudhi/Persistent_cohomology/Multi_field.h b/src/Persistent_cohomology/include/gudhi/Persistent_cohomology/Multi_field.h
index 0591fc95..38bc08d1 100644
--- a/src/Persistent_cohomology/include/gudhi/Persistent_cohomology/Multi_field.h
+++ b/src/Persistent_cohomology/include/gudhi/Persistent_cohomology/Multi_field.h
@@ -81,8 +81,7 @@ class Multi_field {
// set m to primorial(bound_prime)
prod_characteristics_ = 1;
for (auto p : primes_) {
- mpz_mul_ui(prod_characteristics_.get_mpz_t(),
- prod_characteristics_.get_mpz_t(), p);
+ prod_characteristics_ *= p;
}
// Uvect_
diff --git a/src/Persistent_cohomology/include/gudhi/Persistent_cohomology/Persistent_cohomology_column.h b/src/Persistent_cohomology/include/gudhi/Persistent_cohomology/Persistent_cohomology_column.h
index 612658e6..5deb2d88 100644
--- a/src/Persistent_cohomology/include/gudhi/Persistent_cohomology/Persistent_cohomology_column.h
+++ b/src/Persistent_cohomology/include/gudhi/Persistent_cohomology/Persistent_cohomology_column.h
@@ -23,7 +23,6 @@
#ifndef PERSISTENT_COHOMOLOGY_PERSISTENT_COHOMOLOGY_COLUMN_H_
#define PERSISTENT_COHOMOLOGY_PERSISTENT_COHOMOLOGY_COLUMN_H_
-#include <boost/tuple/tuple.hpp>
#include <boost/intrusive/set.hpp>
#include <boost/intrusive/list.hpp>
diff --git a/src/Persistent_cohomology/test/CMakeLists.txt b/src/Persistent_cohomology/test/CMakeLists.txt
index ed63a6ac..a21f39c4 100644
--- a/src/Persistent_cohomology/test/CMakeLists.txt
+++ b/src/Persistent_cohomology/test/CMakeLists.txt
@@ -1,21 +1,23 @@
cmake_minimum_required(VERSION 2.6)
-project(GUDHIPersistentCohomologyUT)
+project(Persistent_cohomology_tests)
if (GCOVR_PATH)
# for gcovr to make coverage reports - Corbera Jenkins plugin
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fprofile-arcs -ftest-coverage")
- set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -fprofile-arcs -ftest-coverage")
- set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -fprofile-arcs -ftest-coverage")
-endif()
+endif(GCOVR_PATH)
if (GPROF_PATH)
# for gprof to make coverage reports - Jenkins
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pg")
- set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -pg")
- set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -pg")
-endif()
+endif(GPROF_PATH)
add_executable ( PersistentCohomologyUT persistent_cohomology_unit_test.cpp )
target_link_libraries(PersistentCohomologyUT ${Boost_SYSTEM_LIBRARY} ${Boost_UNIT_TEST_FRAMEWORK_LIBRARY})
+add_executable ( BettiNumbersUT betti_numbers_unit_test.cpp )
+target_link_libraries(BettiNumbersUT ${Boost_SYSTEM_LIBRARY} ${Boost_UNIT_TEST_FRAMEWORK_LIBRARY})
+if (TBB_FOUND)
+ target_link_libraries(PersistentCohomologyUT ${TBB_LIBRARIES})
+ target_link_libraries(BettiNumbersUT ${TBB_LIBRARIES})
+endif(TBB_FOUND)
# Unitary tests
add_test(NAME PersistentCohomologyUT
@@ -24,9 +26,17 @@ add_test(NAME PersistentCohomologyUT
# XML format for Jenkins xUnit plugin
--log_format=XML --log_sink=${CMAKE_SOURCE_DIR}/PersistentCohomologyUT.xml --log_level=test_suite --report_level=no)
+add_test(NAME BettiNumbersUT
+ COMMAND ${CMAKE_CURRENT_BINARY_DIR}/BettiNumbersUT
+ # XML format for Jenkins xUnit plugin
+ --log_format=XML --log_sink=${CMAKE_SOURCE_DIR}/BettiNumbersUT.xml --log_level=test_suite --report_level=no)
+
if(GMPXX_FOUND AND GMP_FOUND)
add_executable ( PersistentCohomologyMultiFieldUT persistent_cohomology_unit_test_multi_field.cpp )
target_link_libraries(PersistentCohomologyMultiFieldUT ${Boost_SYSTEM_LIBRARY} ${Boost_UNIT_TEST_FRAMEWORK_LIBRARY} ${GMPXX_LIBRARIES} ${GMP_LIBRARIES})
+ if (TBB_FOUND)
+ target_link_libraries(PersistentCohomologyMultiFieldUT ${TBB_LIBRARIES})
+ endif(TBB_FOUND)
# Unitary tests
add_test(NAME PersistentCohomologyMultiFieldUT
@@ -35,5 +45,5 @@ if(GMPXX_FOUND AND GMP_FOUND)
# XML format for Jenkins xUnit plugin
--log_format=XML --log_sink=${CMAKE_SOURCE_DIR}/PersistentCohomologyMultiFieldUT.xml --log_level=test_suite --report_level=no)
-endif()
+endif(GMPXX_FOUND AND GMP_FOUND)
diff --git a/src/Persistent_cohomology/test/betti_numbers_unit_test.cpp b/src/Persistent_cohomology/test/betti_numbers_unit_test.cpp
new file mode 100644
index 00000000..40221005
--- /dev/null
+++ b/src/Persistent_cohomology/test/betti_numbers_unit_test.cpp
@@ -0,0 +1,234 @@
+#include <iostream>
+#include <string>
+#include <algorithm>
+#include <utility> // std::pair, std::make_pair
+#include <cmath> // float comparison
+#include <limits>
+
+#define BOOST_TEST_DYN_LINK
+#define BOOST_TEST_MODULE "betti_numbers"
+#include <boost/test/unit_test.hpp>
+
+#include "gudhi/Simplex_tree.h"
+#include "gudhi/Persistent_cohomology.h"
+
+struct MiniSTOptions : Gudhi::Simplex_tree_options_full_featured {
+ // Implicitly use 0 as filtration value for all simplices
+ static const bool store_filtration = false;
+ // The persistence algorithm needs this
+ static const bool store_key = true;
+ // I have few vertices
+ typedef short Vertex_handle;
+};
+
+using Mini_simplex_tree = Gudhi::Simplex_tree<MiniSTOptions>;
+using Mini_st_persistence =
+ Gudhi::persistent_cohomology::Persistent_cohomology<Mini_simplex_tree, Gudhi::persistent_cohomology::Field_Zp>;
+
+/*
+ * Compare two intervals by dimension, then by length.
+ */
+template<class Simplicial_complex>
+struct cmp_intervals_by_dim_then_length {
+ explicit cmp_intervals_by_dim_then_length(Simplicial_complex * sc)
+ : sc_(sc) { }
+
+ template<typename Persistent_interval>
+ bool operator()(const Persistent_interval & p1, const Persistent_interval & p2) {
+ if (sc_->dimension(get < 0 > (p1)) == sc_->dimension(get < 0 > (p2)))
+ return (sc_->filtration(get < 1 > (p1)) - sc_->filtration(get < 0 > (p1))
+ > sc_->filtration(get < 1 > (p2)) - sc_->filtration(get < 0 > (p2)));
+ else
+ return (sc_->dimension(get < 0 > (p1)) > sc_->dimension(get < 0 > (p2)));
+ }
+ Simplicial_complex* sc_;
+};
+
+BOOST_AUTO_TEST_CASE( plain_homology_betti_numbers )
+{
+ Mini_simplex_tree st;
+
+ /* Complex to build. */
+ /* 1 4 */
+ /* o---o */
+ /* /3\ / */
+ /* o---o o */
+ /* 2 0 5 */
+ const short tetra0123[] = {0, 1, 2, 3};
+ const short edge04[] = {0, 4};
+ const short edge14[] = {1, 4};
+ const short vertex5[] = {5};
+ st.insert_simplex_and_subfaces(tetra0123);
+ st.insert_simplex_and_subfaces(edge04);
+ st.insert_simplex(edge14);
+ st.insert_simplex(vertex5);
+ // FIXME: Remove this line
+ st.set_dimension(3);
+
+ // Sort the simplices in the order of the filtration
+ st.initialize_filtration();
+
+ // Class for homology computation
+ Mini_st_persistence pcoh(st);
+
+ // Initialize the coefficient field Z/3Z for homology
+ pcoh.init_coefficients(3);
+
+ // Compute the persistence diagram of the complex
+ pcoh.compute_persistent_cohomology();
+
+ // Print the result. The format is, on each line: 2 dim 0 inf
+ // where 2 represents the field, dim the dimension of the feature.
+ // 2 0 0 inf
+ // 2 0 0 inf
+ // 2 1 0 inf
+ // means that in Z/2Z-homology, the Betti numbers are b0=2 and b1=1.
+
+ BOOST_CHECK(pcoh.betti_number(0) == 2);
+ BOOST_CHECK(pcoh.betti_number(1) == 1);
+ BOOST_CHECK(pcoh.betti_number(2) == 0);
+
+ std::vector<int> bns = pcoh.betti_numbers();
+ BOOST_CHECK(bns.size() == 3);
+ BOOST_CHECK(bns[0] == 2);
+ BOOST_CHECK(bns[1] == 1);
+ BOOST_CHECK(bns[2] == 0);
+
+ // Custom sort and output persistence
+ cmp_intervals_by_dim_then_length<Mini_simplex_tree> cmp(&st);
+ auto persistent_pairs = pcoh.get_persistent_pairs();
+
+ std::sort(std::begin(persistent_pairs), std::end(persistent_pairs), cmp);
+
+ BOOST_CHECK(persistent_pairs.size() == 3);
+ // persistent_pairs[0] = 2 1 0 inf
+ BOOST_CHECK(st.dimension(get<0>(persistent_pairs[0])) == 1);
+ BOOST_CHECK(st.filtration(get<0>(persistent_pairs[0])) == 0);
+ BOOST_CHECK(get<1>(persistent_pairs[0]) == st.null_simplex());
+
+ // persistent_pairs[1] = 2 0 0 inf
+ BOOST_CHECK(st.dimension(get<0>(persistent_pairs[1])) == 0);
+ BOOST_CHECK(st.filtration(get<0>(persistent_pairs[1])) == 0);
+ BOOST_CHECK(get<1>(persistent_pairs[1]) == st.null_simplex());
+
+ // persistent_pairs[2] = 2 0 0 inf
+ BOOST_CHECK(st.dimension(get<0>(persistent_pairs[2])) == 0);
+ BOOST_CHECK(st.filtration(get<0>(persistent_pairs[2])) == 0);
+ BOOST_CHECK(get<1>(persistent_pairs[2]) == st.null_simplex());
+}
+
+using Simplex_tree = Gudhi::Simplex_tree<>;
+using St_persistence =
+ Gudhi::persistent_cohomology::Persistent_cohomology<Simplex_tree, Gudhi::persistent_cohomology::Field_Zp>;
+
+BOOST_AUTO_TEST_CASE( betti_numbers )
+{
+ Simplex_tree st;
+
+ /* Complex to build. */
+ /* 1 4 */
+ /* o---o */
+ /* /3\ / */
+ /* o---o o */
+ /* 2 0 5 */
+ const short tetra0123[] = {0, 1, 2, 3};
+ const short edge04[] = {0, 4};
+ const short edge14[] = {1, 4};
+ const short vertex5[] = {5};
+ st.insert_simplex_and_subfaces(tetra0123, 4.0);
+ st.insert_simplex_and_subfaces(edge04, 2.0);
+ st.insert_simplex(edge14, 2.0);
+ st.insert_simplex(vertex5, 1.0);
+ // FIXME: Remove this line
+ st.set_dimension(3);
+
+ // Sort the simplices in the order of the filtration
+ st.initialize_filtration();
+
+ // Class for homology computation
+ St_persistence pcoh(st);
+
+ // Initialize the coefficient field Z/3Z for homology
+ pcoh.init_coefficients(3);
+
+ // Compute the persistence diagram of the complex
+ pcoh.compute_persistent_cohomology();
+
+ // Check the Betti numbers are b0=2, b1=1 and b2=0.
+ BOOST_CHECK(pcoh.betti_number(0) == 2);
+ BOOST_CHECK(pcoh.betti_number(1) == 1);
+ BOOST_CHECK(pcoh.betti_number(2) == 0);
+
+ // Check the Betti numbers are b0=2, b1=1 and b2=0.
+ std::vector<int> bns = pcoh.betti_numbers();
+ BOOST_CHECK(bns.size() == 3);
+ BOOST_CHECK(bns[0] == 2);
+ BOOST_CHECK(bns[1] == 1);
+ BOOST_CHECK(bns[2] == 0);
+
+ // Check the persistent Betti numbers in [4., 10.] are b0=2, b1=1 and b2=0.
+ BOOST_CHECK(pcoh.persistent_betti_number(0, 4., 10.) == 2);
+ BOOST_CHECK(pcoh.persistent_betti_number(1, 4., 10.) == 1);
+ BOOST_CHECK(pcoh.persistent_betti_number(2, 4., 10.) == 0);
+
+ // Check the persistent Betti numbers in [2., 100.] are b0=2, b1=0 and b2=0.
+ BOOST_CHECK(pcoh.persistent_betti_number(0, 2., 100.) == 2);
+ BOOST_CHECK(pcoh.persistent_betti_number(1, 2., 100.) == 0);
+ BOOST_CHECK(pcoh.persistent_betti_number(2, 2., 100.) == 0);
+
+ // Check the persistent Betti numbers in [1., 1000.] are b0=1, b1=0 and b2=0.
+ BOOST_CHECK(pcoh.persistent_betti_number(0, 1., 1000.) == 1);
+ BOOST_CHECK(pcoh.persistent_betti_number(1, 1., 1000.) == 0);
+ BOOST_CHECK(pcoh.persistent_betti_number(2, 1., 1000.) == 0);
+
+ // Check the persistent Betti numbers in [.9, 1000.] are b0=0, b1=0 and b2=0.
+ BOOST_CHECK(pcoh.persistent_betti_number(0, .9, 1000.) == 0);
+ BOOST_CHECK(pcoh.persistent_betti_number(1, .9, 1000.) == 0);
+ BOOST_CHECK(pcoh.persistent_betti_number(2, .9, 1000.) == 0);
+
+ // Check the persistent Betti numbers in [4.1, 10000.] are b0=2, b1=1 and b2=0.
+ bns = pcoh.persistent_betti_numbers(4.1, 10000.);
+ BOOST_CHECK(bns[0] == 2);
+ BOOST_CHECK(bns[1] == 1);
+ BOOST_CHECK(bns[2] == 0);
+
+ // Check the persistent Betti numbers in [2.1, 100000.] are b0=2, b1=0 and b2=0.
+ bns = pcoh.persistent_betti_numbers(2.1, 100000.);
+ BOOST_CHECK(bns[0] == 2);
+ BOOST_CHECK(bns[1] == 0);
+ BOOST_CHECK(bns[2] == 0);
+
+ // Check the persistent Betti numbers in [1.1, 1000000.] are b0=1, b1=0 and b2=0.
+ bns = pcoh.persistent_betti_numbers(1.1, 1000000.);
+ BOOST_CHECK(bns[0] == 1);
+ BOOST_CHECK(bns[1] == 0);
+ BOOST_CHECK(bns[2] == 0);
+
+ // Check the persistent Betti numbers in [.1, 10000000.] are b0=0, b1=0 and b2=0.
+ bns = pcoh.persistent_betti_numbers(.1, 10000000.);
+ BOOST_CHECK(bns[0] == 0);
+ BOOST_CHECK(bns[1] == 0);
+ BOOST_CHECK(bns[2] == 0);
+
+ // Custom sort and output persistence
+ cmp_intervals_by_dim_then_length<Simplex_tree> cmp(&st);
+ auto persistent_pairs = pcoh.get_persistent_pairs();
+
+ std::sort(std::begin(persistent_pairs), std::end(persistent_pairs), cmp);
+
+ BOOST_CHECK(persistent_pairs.size() == 3);
+ // persistent_pairs[0] = 2 1 4 inf
+ BOOST_CHECK(st.dimension(get<0>(persistent_pairs[0])) == 1);
+ BOOST_CHECK(st.filtration(get<0>(persistent_pairs[0])) == 4);
+ BOOST_CHECK(get<1>(persistent_pairs[0]) == st.null_simplex());
+
+ // persistent_pairs[1] = 2 0 2 inf
+ BOOST_CHECK(st.dimension(get<0>(persistent_pairs[1])) == 0);
+ BOOST_CHECK(st.filtration(get<0>(persistent_pairs[1])) == 2);
+ BOOST_CHECK(get<1>(persistent_pairs[1]) == st.null_simplex());
+
+ // persistent_pairs[2] = 2 0 1 inf
+ BOOST_CHECK(st.dimension(get<0>(persistent_pairs[2])) == 0);
+ BOOST_CHECK(st.filtration(get<0>(persistent_pairs[2])) == 1);
+ BOOST_CHECK(get<1>(persistent_pairs[2]) == st.null_simplex());
+}
diff --git a/src/Persistent_cohomology/test/persistent_cohomology_unit_test.cpp b/src/Persistent_cohomology/test/persistent_cohomology_unit_test.cpp
index 194b3e74..6efd749e 100644
--- a/src/Persistent_cohomology/test/persistent_cohomology_unit_test.cpp
+++ b/src/Persistent_cohomology/test/persistent_cohomology_unit_test.cpp
@@ -4,6 +4,7 @@
#include <utility> // std::pair, std::make_pair
#include <cmath> // float comparison
#include <limits>
+#include <cstdint> // for std::uint8_t
#define BOOST_TEST_DYN_LINK
#define BOOST_TEST_MODULE "persistent_cohomology"
@@ -43,7 +44,7 @@ std::string test_rips_persistence(int coefficient, int min_persistence) {
st.initialize_filtration();
// Compute the persistence diagram of the complex
- persistent_cohomology::Persistent_cohomology<Simplex_tree<>, Field_Zp> pcoh(st);
+ Persistent_cohomology<Simplex_tree<>, Field_Zp> pcoh(st);
pcoh.init_coefficients( coefficient ); // initializes the coefficient field for homology
// Check infinite rips
@@ -172,3 +173,45 @@ BOOST_AUTO_TEST_CASE( rips_persistent_cohomology_single_field_dim_5 )
// std::string str_rips_persistence = test_rips_persistence(6, 0);
// TODO(VR): division by zero
// std::string str_rips_persistence = test_rips_persistence(0, 0);
+
+/** SimplexTree minimal options to test the limits.
+ *
+ * Maximum number of simplices to compute persistence is <CODE>std::numeric_limits<std::uint8_t>::max()<\CODE> = 256.*/
+struct MiniSTOptions {
+ typedef linear_indexing_tag Indexing_tag;
+ typedef short Vertex_handle;
+ typedef double Filtration_value;
+ // Maximum number of simplices to compute persistence is 2^8 - 1 = 255. One is reserved for null_key
+ typedef std::uint8_t Simplex_key;
+ static const bool store_key = true;
+ static const bool store_filtration = false;
+ static const bool contiguous_vertices = false;
+};
+
+using Mini_simplex_tree = Gudhi::Simplex_tree<MiniSTOptions>;
+using Mini_st_persistence =
+ Gudhi::persistent_cohomology::Persistent_cohomology<Mini_simplex_tree, Gudhi::persistent_cohomology::Field_Zp>;
+
+BOOST_AUTO_TEST_CASE( persistence_constructor_exception )
+{
+ Mini_simplex_tree st;
+
+ // To make number of simplices = 255
+ const short simplex_0[] = {0, 1, 2, 3, 4, 5, 6, 7};
+ st.insert_simplex_and_subfaces(simplex_0);
+ // FIXME: Remove this line
+ st.set_dimension(8);
+
+ // Sort the simplices in the order of the filtration
+ st.initialize_filtration();
+
+ BOOST_CHECK(st.num_simplices() <= std::numeric_limits<MiniSTOptions::Simplex_key>::max());
+ // Class for homology computation
+ BOOST_CHECK_NO_THROW(Mini_st_persistence pcoh(st));
+
+ st.insert_simplex({8});
+ BOOST_CHECK(st.num_simplices() > std::numeric_limits<MiniSTOptions::Simplex_key>::max());
+ // Class for homology computation
+ BOOST_CHECK_THROW(Mini_st_persistence pcoh2(st), std::out_of_range);
+
+}