/* This file is part of the Gudhi Library. The Gudhi library * (Geometric Understanding in Higher Dimensions) is a generic C++ * library for computational topology. * * Author(s): Francois Godi * * Copyright (C) 2015 INRIA Saclay (France) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #ifndef SRC_BOTTLENECK_INCLUDE_GUDHI_GRAPH_MATCHING_H_ #define SRC_BOTTLENECK_INCLUDE_GUDHI_GRAPH_MATCHING_H_ #include #include #include #include "gudhi/Layered_neighbors_finder.h" namespace Gudhi { namespace bottleneck { template double bottleneck_distance(Persistence_diagram1& diag1, Persistence_diagram2& diag2, double e = 0.); class Graph_matching { public: Graph_matching(const Persistence_diagrams_graph& g); Graph_matching& operator=(const Graph_matching& m); bool perfect() const; bool multi_augment(); void set_r(double r); private: const Persistence_diagrams_graph& g; double r; std::vector v_to_u; std::list unmatched_in_u; Layered_neighbors_finder* layering() const; bool augment(Layered_neighbors_finder* layered_nf, int u_start_index, int max_depth); void update(std::deque& path); }; Graph_matching::Graph_matching(const Persistence_diagrams_graph& g) : g(g), r(0), v_to_u(g.size()), unmatched_in_u() { for (int u_point_index = 0; u_point_index < g.size(); ++u_point_index) unmatched_in_u.emplace_back(u_point_index); } Graph_matching& Graph_matching::operator=(const Graph_matching& m) { r = m.r; v_to_u = m.v_to_u; unmatched_in_u = m.unmatched_in_u; return *this; } inline bool Graph_matching::perfect() const { return unmatched_in_u.empty(); } inline bool Graph_matching::multi_augment() { if (perfect()) return false; Layered_neighbors_finder* layered_nf = layering(); double rn = sqrt(g.size()); int nblmax = layered_nf->vlayers_number()*2 + 1; // verification of a necessary criterion if ((unmatched_in_u.size() > rn && nblmax > rn) || nblmax == 0) return false; bool successful = false; std::list* tries = new std::list(unmatched_in_u); for (auto it = tries->cbegin(); it != tries->cend(); it++) successful = successful || augment(layered_nf, *it, nblmax); delete tries; delete layered_nf; return successful; } inline void Graph_matching::set_r(double r) { this->r = r; } Layered_neighbors_finder* Graph_matching::layering() const { bool end = false; int layer = 0; std::list u_vertices(unmatched_in_u); std::list v_vertices; Neighbors_finder nf(g, r); Layered_neighbors_finder* layered_nf = new Layered_neighbors_finder(g, r); for (int v_point_index = 0; v_point_index < g.size(); ++v_point_index) nf.add(v_point_index); while (!u_vertices.empty()) { for (auto it = u_vertices.cbegin(); it != u_vertices.cend(); ++it) { std::list* u_succ = nf.pull_all_near(*it); for (auto it = u_succ->cbegin(); it != u_succ->cend(); ++it) { layered_nf->add(*it, layer); v_vertices.emplace_back(*it); } delete u_succ; } u_vertices.clear(); for (auto it = v_vertices.cbegin(); it != v_vertices.cend(); it++) { if (v_to_u.at(*it) == null_point_index()) end = true; else u_vertices.emplace_back(v_to_u.at(*it)); } if (end) return layered_nf; v_vertices.clear(); layer++; } return layered_nf; } bool Graph_matching::augment(Layered_neighbors_finder *layered_nf, int u_start_index, int max_depth) { std::deque path; path.emplace_back(u_start_index); // start is a point from U do { if (static_cast(path.size()) > max_depth) { path.pop_back(); path.pop_back(); } if (path.empty()) return false; int w = path.back(); path.emplace_back(layered_nf->pull_near(w, path.size() / 2)); while (path.back() == null_point_index()) { path.pop_back(); path.pop_back(); if (path.empty()) return false; path.pop_back(); path.emplace_back(layered_nf->pull_near(path.back(), path.size() / 2)); } path.emplace_back(v_to_u.at(path.back())); } while (path.back() != null_point_index()); path.pop_back(); update(path); return true; } void Graph_matching::update(std::deque& path) { unmatched_in_u.remove(path.front()); for (auto it = path.cbegin(); it != path.cend(); ++it) { int tmp = *it; ++it; v_to_u[*it] = tmp; } } template double bottleneck_distance(Persistence_diagram1& diag1, Persistence_diagram2& diag2, double e) { Persistence_diagrams_graph g(diag1, diag2, e); std::vector* sd = g.sorted_distances(); int idmin = 0; int idmax = sd->size() - 1; double alpha = pow(sd->size(), 0.25); Graph_matching m(g); Graph_matching biggest_unperfect = m; while (idmin != idmax) { int pas = static_cast((idmax - idmin) / alpha); m.set_r(sd->at(idmin + pas)); while (m.multi_augment()) {} if (m.perfect()) { idmax = idmin + pas; m = biggest_unperfect; } else { biggest_unperfect = m; idmin = idmin + pas + 1; } } double b = sd->at(idmin); delete sd; return b; } } // namespace bottleneck } // namespace Gudhi #endif // SRC_BOTTLENECK_INCLUDE_GUDHI_GRAPH_MATCHING_H_