/* This file is part of the Gudhi Library. The Gudhi library * (Geometric Understanding in Higher Dimensions) is a generic C++ * library for computational topology. * * Author(s): Francois Godi * * Copyright (C) 2015 INRIA Sophia-Antipolis (France) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #ifndef SRC_BOTTLENECK_INCLUDE_GUDHI_GRAPH_MATCHING_H_ #define SRC_BOTTLENECK_INCLUDE_GUDHI_GRAPH_MATCHING_H_ #include #include namespace Gudhi { namespace Bottleneck_distance { /** \brief Function to use in order to compute the Bottleneck distance between two persistence diagrams. * * * * \ingroup bottleneck_distance */ template double compute(const Persistence_diagram1& diag1, const Persistence_diagram2& diag2, double e = 0.); /** \internal \brief Structure representing a graph matching. The graph is a Persistence_diagrams_graph. * * \ingroup bottleneck_distance */ class Graph_matching { public: /** \internal \brief Constructor constructing an empty matching. */ explicit Graph_matching(); /** \internal \brief Copy operator. */ Graph_matching& operator=(const Graph_matching& m); /** \internal \brief Is the matching perfect ? */ bool perfect() const; /** \internal \brief Augments the matching with a maximal set of edge-disjoint shortest augmenting paths. */ bool multi_augment(); /** \internal \brief Sets the maximum length of the edges allowed to be added in the matching, 0 initially. */ void set_r(double r); private: double r; /** \internal \brief Given a point from V, provides its matched point in U, null_point_index() if there isn't. */ std::vector v_to_u; /** \internal \brief All the unmatched points in U. */ std::list unmatched_in_u; /** \internal \brief Provides a Layered_neighbors_finder dividing the graph in layers. Basically a BFS. */ std::shared_ptr layering() const; /** \internal \brief Augments the matching with a simple path no longer than max_depth. Basically a DFS. */ bool augment(Layered_neighbors_finder & layered_nf, int u_start_index, int max_depth); /** \internal \brief Update the matching with the simple augmenting path given as parameter. */ void update(std::deque & path); }; inline Graph_matching::Graph_matching() : r(0.), v_to_u(G::size(), null_point_index()), unmatched_in_u() { for (int u_point_index = 0; u_point_index < G::size(); ++u_point_index) unmatched_in_u.emplace_back(u_point_index); } inline Graph_matching& Graph_matching::operator=(const Graph_matching& m) { r = m.r; v_to_u = m.v_to_u; unmatched_in_u = m.unmatched_in_u; return *this; } inline bool Graph_matching::perfect() const { return unmatched_in_u.empty(); } inline bool Graph_matching::multi_augment() { if (perfect()) return false; Layered_neighbors_finder layered_nf = *layering(); int max_depth = layered_nf.vlayers_number()*2 - 1; double rn = sqrt(G::size()); // verification of a necessary criterion in order to shortcut if possible if (max_depth <0 || (unmatched_in_u.size() > rn && max_depth >= rn)) return false; bool successful = false; std::list tries(unmatched_in_u); for (auto it = tries.cbegin(); it != tries.cend(); it++) // 'augment' has side-effects which have to be always executed, don't change order successful = augment(layered_nf, *it, max_depth) || successful; return successful; } inline void Graph_matching::set_r(double r) { this->r = r; } inline bool Graph_matching::augment(Layered_neighbors_finder & layered_nf, int u_start_index, int max_depth) { //V vertices have at most one successor, thus when we backtrack from U we can directly pop_back 2 vertices. std::deque path; path.emplace_back(u_start_index); do { if (static_cast(path.size()) > max_depth) { path.pop_back(); path.pop_back(); } if (path.empty()) return false; path.emplace_back(layered_nf.pull_near(path.back(), static_cast(path.size())/2)); while (path.back() == null_point_index()) { path.pop_back(); path.pop_back(); if (path.empty()) return false; path.pop_back(); path.emplace_back(layered_nf.pull_near(path.back(), path.size() / 2)); } path.emplace_back(v_to_u.at(path.back())); } while (path.back() != null_point_index()); //if v_to_u.at(path.back()) has no successor, path.back() is an exposed vertex path.pop_back(); update(path); return true; } inline std::shared_ptr Graph_matching::layering() const { std::list u_vertices(unmatched_in_u); std::list v_vertices; Neighbors_finder nf(r); for (int v_point_index = 0; v_point_index < G::size(); ++v_point_index) nf.add(v_point_index); std::shared_ptr layered_nf(new Layered_neighbors_finder(r)); for(int layer = 0; !u_vertices.empty(); layer++) { // one layer is one step in the BFS for (auto it1 = u_vertices.cbegin(); it1 != u_vertices.cend(); ++it1) { std::shared_ptr> u_succ(nf.pull_all_near(*it1)); for (auto it2 = u_succ->begin(); it2 != u_succ->end(); ++it2) { layered_nf->add(*it2, layer); v_vertices.emplace_back(*it2); } } // When the above for finishes, we have progress of one half-step (from U to V) in the BFS u_vertices.clear(); bool end = false; for (auto it = v_vertices.cbegin(); it != v_vertices.cend(); it++) if (v_to_u.at(*it) == null_point_index()) // we stop when a nearest exposed V vertex (from U exposed vertices) has been found end = true; else u_vertices.emplace_back(v_to_u.at(*it)); // When the above for finishes, we have progress of one half-step (from V to U) in the BFS if (end) return layered_nf; v_vertices.clear(); } return layered_nf; } inline void Graph_matching::update(std::deque& path) { unmatched_in_u.remove(path.front()); for (auto it = path.cbegin(); it != path.cend(); ++it) { // Be careful, the iterator is incremented twice each time int tmp = *it; v_to_u[*(++it)] = tmp; } } template double compute_exactly(const Persistence_diagram1 &diag1, const Persistence_diagram2 &diag2) { G::initialize(diag1, diag2, 0.); std::shared_ptr< std::vector > sd(G::sorted_distances()); int idmin = 0; int idmax = sd->size() - 1; // alpha can be modified, this will change the complexity double alpha = pow(sd->size(), 0.25); Graph_matching m; Graph_matching biggest_unperfect; while (idmin != idmax) { int step = static_cast((idmax - idmin) / alpha); m.set_r(sd->at(idmin + step)); while (m.multi_augment()); //The above while compute a maximum matching (according to the r setted before) if (m.perfect()) { idmax = idmin + step; m = biggest_unperfect; } else { biggest_unperfect = m; idmin = idmin + step + 1; } } return sd->at(idmin); } template double compute(const Persistence_diagram1 &diag1, const Persistence_diagram2 &diag2, double e) { if(e< std::numeric_limits::min()) return compute_exactly(diag1, diag2); G::initialize(diag1, diag2, e); double d = 0.; double f = G::diameter(); while (f-d > e){ Graph_matching m; m.set_r((d+f)/2.); while (m.multi_augment()); //The above while compute a maximum matching (according to the r setted before) if (m.perfect()) f = (d+f)/2.; else d= (d+f)/2.; } return d; } } // namespace Bottleneck_distance } // namespace Gudhi #endif // SRC_BOTTLENECK_INCLUDE_GUDHI_GRAPH_MATCHING_H_