/* This file is part of the Gudhi Library. The Gudhi library * (Geometric Understanding in Higher Dimensions) is a generic C++ * library for computational topology. * * Author(s): Mathieu Carriere * * Copyright (C) 2018 INRIA (France) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #ifndef SLICED_WASSERSTEIN_H_ #define SLICED_WASSERSTEIN_H_ // gudhi include #include // standard include #include #include #include #include #include #include #include #include #include #include #include double pi = boost::math::constants::pi(); using PD = std::vector >; namespace Gudhi { namespace Persistence_representations { class Sliced_Wasserstein { protected: PD diagram; int approx; double sigma; public: Sliced_Wasserstein(PD _diagram){diagram = _diagram; approx = 100; sigma = 0.001;} Sliced_Wasserstein(PD _diagram, double _sigma, int _approx){diagram = _diagram; approx = _approx; sigma = _sigma;} PD get_diagram(){return this->diagram;} int get_approx(){return this->approx;} double get_sigma(){return this->sigma;} // ********************************** // Utils. // ********************************** // Compute the angle formed by two points of a PD double compute_angle(PD diag, int i, int j){ std::pair vect; double x1,y1, x2,y2; x1 = diag[i].first; y1 = diag[i].second; x2 = diag[j].first; y2 = diag[j].second; if (y1 - y2 > 0){ vect.first = y1 - y2; vect.second = x2 - x1;} else{ if(y1 - y2 < 0){ vect.first = y2 - y1; vect.second = x1 - x2; } else{ vect.first = 0; vect.second = abs(x1 - x2);} } double norm = std::sqrt(vect.first*vect.first + vect.second*vect.second); return asin(vect.second/norm); } // Compute the integral of |cos()| between alpha and beta, valid only if alpha is in [-pi,pi] and beta-alpha is in [0,pi] double compute_int_cos(const double & alpha, const double & beta){ double res = 0; if (alpha >= 0 && alpha <= pi){ if (cos(alpha) >= 0){ if(pi/2 <= beta){res = 2-sin(alpha)-sin(beta);} else{res = sin(beta)-sin(alpha);} } else{ if(1.5*pi <= beta){res = 2+sin(alpha)+sin(beta);} else{res = sin(alpha)-sin(beta);} } } if (alpha >= -pi && alpha <= 0){ if (cos(alpha) <= 0){ if(-pi/2 <= beta){res = 2+sin(alpha)+sin(beta);} else{res = sin(alpha)-sin(beta);} } else{ if(pi/2 <= beta){res = 2-sin(alpha)-sin(beta);} else{res = sin(beta)-sin(alpha);} } } return res; } double compute_int(const double & theta1, const double & theta2, const int & p, const int & q, const PD & PD1, const PD & PD2){ double norm = std::sqrt( (PD1[p].first-PD2[q].first)*(PD1[p].first-PD2[q].first) + (PD1[p].second-PD2[q].second)*(PD1[p].second-PD2[q].second) ); double angle1; if (PD1[p].first > PD2[q].first) angle1 = theta1 - asin( (PD1[p].second-PD2[q].second)/norm ); else angle1 = theta1 - asin( (PD2[q].second-PD1[p].second)/norm ); double angle2 = angle1 + theta2 - theta1; double integral = compute_int_cos(angle1,angle2); return norm*integral; } // ********************************** // Scalar product + distance. // ********************************** double compute_sliced_wasserstein_distance(Sliced_Wasserstein second) { PD diagram1 = this->diagram; PD diagram2 = second.diagram; double sw = 0; if(this->approx == -1){ // Add projections onto diagonal. int n1, n2; n1 = diagram1.size(); n2 = diagram2.size(); double max_ordinate = std::numeric_limits::lowest(); for (int i = 0; i < n2; i++){ max_ordinate = std::max(max_ordinate, diagram2[i].second); diagram1.emplace_back( (diagram2[i].first+diagram2[i].second)/2, (diagram2[i].first+diagram2[i].second)/2 ); } for (int i = 0; i < n1; i++){ max_ordinate = std::max(max_ordinate, diagram1[i].second); diagram2.emplace_back( (diagram1[i].first+diagram1[i].second)/2, (diagram1[i].first+diagram1[i].second)/2 ); } int num_pts_dgm = diagram1.size(); // Slightly perturb the points so that the PDs are in generic positions. int mag = 0; while(max_ordinate > 10){mag++; max_ordinate/=10;} double thresh = pow(10,-5+mag); srand(time(NULL)); for (int i = 0; i < num_pts_dgm; i++){ diagram1[i].first += thresh*(1.0-2.0*rand()/RAND_MAX); diagram1[i].second += thresh*(1.0-2.0*rand()/RAND_MAX); diagram2[i].first += thresh*(1.0-2.0*rand()/RAND_MAX); diagram2[i].second += thresh*(1.0-2.0*rand()/RAND_MAX); } // Compute all angles in both PDs. std::vector > > angles1, angles2; for (int i = 0; i < num_pts_dgm; i++){ for (int j = i+1; j < num_pts_dgm; j++){ double theta1 = compute_angle(diagram1,i,j); double theta2 = compute_angle(diagram2,i,j); angles1.emplace_back(theta1, std::pair(i,j)); angles2.emplace_back(theta2, std::pair(i,j)); } } // Sort angles. std::sort(angles1.begin(), angles1.end(), [=](std::pair >& p1, const std::pair >& p2){return (p1.first < p2.first);}); std::sort(angles2.begin(), angles2.end(), [=](std::pair >& p1, const std::pair >& p2){return (p1.first < p2.first);}); // Initialize orders of the points of both PDs (given by ordinates when theta = -pi/2). std::vector orderp1, orderp2; for (int i = 0; i < num_pts_dgm; i++){ orderp1.push_back(i); orderp2.push_back(i); } std::sort( orderp1.begin(), orderp1.end(), [=](int i, int j){ if(diagram1[i].second != diagram1[j].second) return (diagram1[i].second < diagram1[j].second); else return (diagram1[i].first > diagram1[j].first); } ); std::sort( orderp2.begin(), orderp2.end(), [=](int i, int j){ if(diagram2[i].second != diagram2[j].second) return (diagram2[i].second < diagram2[j].second); else return (diagram2[i].first > diagram2[j].first); } ); // Find the inverses of the orders. std::vector order1(num_pts_dgm); std::vector order2(num_pts_dgm); for(int i = 0; i < num_pts_dgm; i++) for (int j = 0; j < num_pts_dgm; j++) if(orderp1[j] == i){ order1[i] = j; break; } for(int i = 0; i < num_pts_dgm; i++) for (int j = 0; j < num_pts_dgm; j++) if(orderp2[j] == i){ order2[i] = j; break; } // Record all inversions of points in the orders as theta varies along the positive half-disk. std::vector > > anglePerm1(num_pts_dgm); std::vector > > anglePerm2(num_pts_dgm); int m1 = angles1.size(); for (int i = 0; i < m1; i++){ double theta = angles1[i].first; int p = angles1[i].second.first; int q = angles1[i].second.second; anglePerm1[order1[p]].emplace_back(p,theta); anglePerm1[order1[q]].emplace_back(q,theta); int a = order1[p]; int b = order1[q]; order1[p] = b; order1[q] = a; } int m2 = angles2.size(); for (int i = 0; i < m2; i++){ double theta = angles2[i].first; int p = angles2[i].second.first; int q = angles2[i].second.second; anglePerm2[order2[p]].emplace_back(p,theta); anglePerm2[order2[q]].emplace_back(q,theta); int a = order2[p]; int b = order2[q]; order2[p] = b; order2[q] = a; } for (int i = 0; i < num_pts_dgm; i++){ anglePerm1[order1[i]].emplace_back(i,pi/2); anglePerm2[order2[i]].emplace_back(i,pi/2); } // Compute the SW distance with the list of inversions. for (int i = 0; i < num_pts_dgm; i++){ std::vector > u,v; u = anglePerm1[i]; v = anglePerm2[i]; double theta1, theta2; theta1 = -pi/2; unsigned int ku, kv; ku = 0; kv = 0; theta2 = std::min(u[ku].second,v[kv].second); while(theta1 != pi/2){ if(diagram1[u[ku].first].first != diagram2[v[kv].first].first || diagram1[u[ku].first].second != diagram2[v[kv].first].second) if(theta1 != theta2) sw += compute_int(theta1, theta2, u[ku].first, v[kv].first, diagram1, diagram2); theta1 = theta2; if ( (theta2 == u[ku].second) && ku < u.size()-1 ) ku++; if ( (theta2 == v[kv].second) && kv < v.size()-1 ) kv++; theta2 = std::min(u[ku].second, v[kv].second); } } } else{ double step = pi/this->approx; // Add projections onto diagonal. int n1, n2; n1 = diagram1.size(); n2 = diagram2.size(); for (int i = 0; i < n2; i++) diagram1.emplace_back( (diagram2[i].first + diagram2[i].second)/2, (diagram2[i].first + diagram2[i].second)/2 ); for (int i = 0; i < n1; i++) diagram2.emplace_back( (diagram1[i].first + diagram1[i].second)/2, (diagram1[i].first + diagram1[i].second)/2 ); int n = diagram1.size(); // Sort and compare all projections. for (int i = 0; i < this->approx; i++){ std::vector > l1, l2; for (int j = 0; j < n; j++){ l1.emplace_back( j, diagram1[j].first*cos(-pi/2+i*step) + diagram1[j].second*sin(-pi/2+i*step) ); l2.emplace_back( j, diagram2[j].first*cos(-pi/2+i*step) + diagram2[j].second*sin(-pi/2+i*step) ); } std::sort(l1.begin(),l1.end(), [=](const std::pair & p1, const std::pair & p2){return p1.second < p2.second;}); std::sort(l2.begin(),l2.end(), [=](const std::pair & p1, const std::pair & p2){return p1.second < p2.second;}); double f = 0; for (int j = 0; j < n; j++) f += std::abs(l1[j].second - l2[j].second); sw += f*step; } } return sw/pi; } double compute_scalar_product(Sliced_Wasserstein second){ return std::exp(-compute_sliced_wasserstein_distance(second)/(2*this->sigma*this->sigma)); } double distance(Sliced_Wasserstein second, double power = 1) { if(this->sigma != second.sigma || this->approx != second.approx){std::cout << "Error: different representations!" << std::endl; return 0;} else return std::pow(this->compute_scalar_product(*this) + second.compute_scalar_product(second)-2*this->compute_scalar_product(second), power/2.0); } }; } // namespace Sliced_Wasserstein } // namespace Gudhi #endif // SLICED_WASSERSTEIN_H_