/* This file is part of the Gudhi Library. The Gudhi library * (Geometric Understanding in Higher Dimensions) is a generic C++ * library for computational topology. * * Author(s): Vincent Rouvreau * * Copyright (C) 2014 INRIA Saclay (France) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include "gudhi/graph_simplicial_complex.h" #include "gudhi/Simplex_tree.h" #include "gudhi/Persistent_cohomology.h" #include using namespace Gudhi; using namespace Gudhi::persistent_cohomology; // Alpha_shape_3 templates type definitions typedef CGAL::Exact_predicates_inexact_constructions_kernel Kernel; typedef CGAL::Alpha_shape_vertex_base_3 Vb; typedef CGAL::Alpha_shape_cell_base_3 Fb; typedef CGAL::Triangulation_data_structure_3 Tds; typedef CGAL::Delaunay_triangulation_3 Triangulation_3; typedef CGAL::Alpha_shape_3 Alpha_shape_3; // From file type definition typedef Kernel::Point_3 Point; // filtration with alpha values needed type definition typedef Alpha_shape_3::FT Alpha_value_type; typedef CGAL::Object Object; typedef CGAL::Dispatch_output_iterator< CGAL::cpp11::tuple, CGAL::cpp11::tuple >, std::back_insert_iterator< std::vector > > > Dispatch; typedef Alpha_shape_3::Cell_handle Cell_handle; typedef Alpha_shape_3::Facet Facet; typedef Alpha_shape_3::Edge Edge; typedef std::list Vertex_list; // gudhi type definition typedef Simplex_tree<>::Vertex_handle Simplex_tree_vertex; typedef std::map Alpha_shape_simplex_tree_map; typedef std::pair Alpha_shape_simplex_tree_pair; typedef std::vector< Simplex_tree_vertex > Simplex_tree_vector_vertex; //#define DEBUG_TRACES Vertex_list from (const Cell_handle& ch) { Vertex_list the_list; for (auto i = 0; i < 4; i++) { #ifdef DEBUG_TRACES std::cout << "from cell[" << i << "]=" << ch->vertex(i)->point() << std::endl; #endif // DEBUG_TRACES the_list.push_back(ch->vertex(i)); } return the_list; } Vertex_list from (const Facet& fct) { Vertex_list the_list; for (auto i = 0; i < 4; i++) { if (fct.second != i) { #ifdef DEBUG_TRACES std::cout << "from facet=[" << i << "]" << fct.first->vertex(i)->point() << std::endl; #endif // DEBUG_TRACES the_list.push_back(fct.first->vertex(i)); } } return the_list; } Vertex_list from (const Edge& edg) { Vertex_list the_list; for (auto i = 0; i < 4; i++) { if ((edg.second == i) ||(edg.third == i)) { #ifdef DEBUG_TRACES std::cout << "from edge[" << i << "]=" << edg.first->vertex(i)->point() << std::endl; #endif // DEBUG_TRACES the_list.push_back(edg.first->vertex(i)); } } return the_list; } Vertex_list from (const Alpha_shape_3::Vertex_handle& vh) { Vertex_list the_list; #ifdef DEBUG_TRACES std::cout << "from vertex=" << vh->point() << std::endl; #endif // DEBUG_TRACES the_list.push_back(vh); return the_list; } void usage(char * const progName) { std::cerr << "Usage: " << progName << " path_to_file_graph coeff_field_characteristic[integer > 0] min_persistence[float >= -1.0]\n"; exit(-1); // ----- >> } int main (int argc, char * const argv[]) { int coeff_field_characteristic=0; int returnedScanValue = sscanf(argv[2], "%d", &coeff_field_characteristic); if ((returnedScanValue == EOF) || (coeff_field_characteristic <= 0)) { std::cerr << "Error: " << argv[2] << " is not correct\n"; usage(argv[0]); } float min_persistence = 0.0; returnedScanValue = sscanf(argv[3], "%f", &min_persistence); if ((returnedScanValue == EOF) || (min_persistence < -1.0)) { std::cerr << "Error: " << argv[3] << " is not correct\n"; usage(argv[0]); } //Filtration_value min_persistence = (Filtration_value)min_persist_int; // program args management if (argc != 4) { std::cerr << "Error: Number of arguments (" << argc << ") is not correct\n"; usage(argv[0]); } // Read points from file std::string filegraph = argv[1]; std::list lp; std::ifstream is(filegraph.c_str()); int n; is >> n; #ifdef DEBUG_TRACES std::cout << "Reading " << n << " points " << std::endl; #endif // DEBUG_TRACES Point p; for( ; n>0 ; n--) { is >> p; lp.push_back(p); } // alpha shape construction from points. CGAL has a strange behavior in REGULARIZED mode. Alpha_shape_3 as(lp.begin(),lp.end(),0,Alpha_shape_3::GENERAL); #ifdef DEBUG_TRACES std::cout << "Alpha shape computed in GENERAL mode" << std::endl; #endif // DEBUG_TRACES // filtration with alpha values from alpha shape std::vector the_objects; std::vector the_alpha_values; Dispatch disp = CGAL::dispatch_output( std::back_inserter(the_objects), std::back_inserter(the_alpha_values)); as.filtration_with_alpha_values(disp); #ifdef DEBUG_TRACES std::cout << "filtration_with_alpha_values returns : " << the_objects.size() << " objects" << std::endl; #endif // DEBUG_TRACES Alpha_shape_3::size_type count_vertices = 0; Alpha_shape_3::size_type count_edges = 0; Alpha_shape_3::size_type count_facets = 0; Alpha_shape_3::size_type count_cells = 0; // Loop on objects vector Vertex_list vertex_list; Simplex_tree<> simplex_tree; Alpha_shape_simplex_tree_map map_cgal_simplex_tree; std::vector::iterator the_alpha_value_iterator = the_alpha_values.begin(); int dim_max=0; Filtration_value filtration_max=0.0; for(auto object_iterator: the_objects) { // Retrieve Alpha shape vertex list from object if (const Cell_handle* cell = CGAL::object_cast(&object_iterator)) { vertex_list = from(*cell); count_cells++; if (dim_max < 3) { dim_max=3; // Cell is of dim 3 } } else if (const Facet* facet = CGAL::object_cast(&object_iterator)) { vertex_list = from(*facet); count_facets++; if (dim_max < 2) { dim_max=2; // Facet is of dim 2 } } else if (const Edge* edge = CGAL::object_cast(&object_iterator)) { vertex_list = from(*edge); count_edges++; if (dim_max < 1) { dim_max=1; // Edge is of dim 1 } } else if (const Alpha_shape_3::Vertex_handle* vertex = CGAL::object_cast(&object_iterator)) { count_vertices++; vertex_list = from(*vertex); } // Construction of the vector of simplex_tree vertex from list of alpha_shapes vertex Simplex_tree_vector_vertex the_simplex_tree; for (auto the_alpha_shape_vertex:vertex_list) { Alpha_shape_simplex_tree_map::iterator the_map_iterator = map_cgal_simplex_tree.find(the_alpha_shape_vertex); if (the_map_iterator == map_cgal_simplex_tree.end()) { // alpha shape not found Simplex_tree_vertex vertex = map_cgal_simplex_tree.size(); #ifdef DEBUG_TRACES std::cout << "vertex [" << the_alpha_shape_vertex->point() << "] not found - insert " << vertex << std::endl; #endif // DEBUG_TRACES the_simplex_tree.push_back(vertex); map_cgal_simplex_tree.insert(Alpha_shape_simplex_tree_pair(the_alpha_shape_vertex,vertex)); } else { // alpha shape found Simplex_tree_vertex vertex = the_map_iterator->second; #ifdef DEBUG_TRACES std::cout << "vertex [" << the_alpha_shape_vertex->point() << "] found in " << vertex << std::endl; #endif // DEBUG_TRACES the_simplex_tree.push_back(vertex); } } // Construction of the simplex_tree Filtration_value filtr = std::sqrt(*the_alpha_value_iterator); #ifdef DEBUG_TRACES std::cout << "filtration = " << filtr << std::endl; #endif // DEBUG_TRACES if (filtr > filtration_max) { filtration_max = filtr; } simplex_tree.insert(the_simplex_tree, filtr); if (the_alpha_value_iterator != the_alpha_values.end()) ++the_alpha_value_iterator; else std::cout << "This shall not happen" << std::endl; } simplex_tree.set_filtration(filtration_max); simplex_tree.set_num_simplices(count_vertices + count_edges + count_facets + count_cells); simplex_tree.set_dimension(dim_max); #ifdef DEBUG_TRACES std::cout << "vertices \t\t" << count_vertices << std::endl; std::cout << "edges \t\t" << count_edges << std::endl; std::cout << "facets \t\t" << count_facets << std::endl; std::cout << "cells \t\t" << count_cells << std::endl; std::cout << "Information of the Simplex Tree: " << std::endl; std::cout << " Number of vertices = " << simplex_tree.num_vertices() << " "; std::cout << " Number of simplices = " << simplex_tree.num_simplices() << std::endl << std::endl; std::cout << " Dimension = " << simplex_tree.dimension() << " "; std::cout << " filtration = " << simplex_tree.filtration() << std::endl << std::endl; #endif // DEBUG_TRACES #ifdef DEBUG_TRACES std::cout << "Iterator on vertices: " << std::endl; for( auto vertex : simplex_tree.complex_vertex_range() ) { std::cout << vertex << " "; } #endif // DEBUG_TRACES // Sort the simplices in the order of the filtration simplex_tree.initialize_filtration(); std::cout << "Simplex_tree dim: " << simplex_tree.dimension() << std::endl; // Compute the persistence diagram of the complex Persistent_cohomology< Simplex_tree<>, Field_Zp > pcoh( simplex_tree ); pcoh.init_coefficients( coeff_field_characteristic ); //initializes the coefficient field for homology pcoh.compute_persistent_cohomology( (Filtration_value)min_persistence ); pcoh.output_diagram(); return 0; }