/* This file is part of the Gudhi Library. The Gudhi library * (Geometric Understanding in Higher Dimensions) is a generic C++ * library for computational topology. * * Author(s): David Salinas * * Copyright (C) 2014 INRIA Sophia Antipolis-Mediterranee (France) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #ifndef SRC_SKELETON_BLOCKER_INCLUDE_GUDHI_SKELETON_BLOCKER_SIMPLIFIABLE_COMPLEX_H_ #define SRC_SKELETON_BLOCKER_INCLUDE_GUDHI_SKELETON_BLOCKER_SIMPLIFIABLE_COMPLEX_H_ #include #include #include #include "gudhi/Skeleton_blocker/Skeleton_blocker_sub_complex.h" namespace Gudhi { namespace skbl { ///** // * \brief Class that allows simplification operation on a simplicial complex represented // * by a skeleton/blockers pair. // * \ingroup skbl // * @extends Skeleton_blocker_complex // */ //template //class Skeleton_blocker_complex : public Skeleton_blocker_complex { // template friend class Skeleton_blocker_sub_complex; // //public: // typedef Skeleton_blocker_complex SkeletonBlockerComplex; // // typedef typename SkeletonBlockerComplex::Graph_edge Graph_edge; // // typedef typename SkeletonBlockerComplex::boost_adjacency_iterator boost_adjacency_iterator; // typedef typename SkeletonBlockerComplex::Edge_handle Edge_handle; // typedef typename SkeletonBlockerComplex::boost_vertex_handle boost_vertex_handle; // typedef typename SkeletonBlockerComplex::Vertex_handle Vertex_handle; // typedef typename SkeletonBlockerComplex::Root_vertex_handle Root_vertex_handle; // typedef typename SkeletonBlockerComplex::Simplex_handle Simplex_handle; // typedef typename SkeletonBlockerComplex::Root_simplex_handle Root_simplex_handle; // typedef typename SkeletonBlockerComplex::Blocker_handle Blocker_handle; // // // typedef typename SkeletonBlockerComplex::Root_simplex_iterator Root_simplex_iterator; // typedef typename SkeletonBlockerComplex::Simplex_handle_iterator Simplex_handle_iterator; // typedef typename SkeletonBlockerComplex::BlockerMap BlockerMap; // typedef typename SkeletonBlockerComplex::BlockerPair BlockerPair; // typedef typename SkeletonBlockerComplex::BlockerMapIterator BlockerMapIterator; // typedef typename SkeletonBlockerComplex::BlockerMapConstIterator BlockerMapConstIterator; // // typedef typename SkeletonBlockerComplex::Visitor Visitor; // // // /** @name Constructors / Destructors / Initialization // */ // //@{ // // explicit Skeleton_blocker_complex(int num_vertices_ = 0, Visitor* visitor_ = NULL) : // Skeleton_blocker_complex(num_vertices_, visitor_) { } // // /** // * @brief Constructor with a list of simplices // * @details The list of simplices must be the list // * of simplices of a simplicial complex, sorted with increasing dimension. // */ // //soon deprecated // explicit Skeleton_blocker_complex(std::list& simplices, Visitor* visitor_ = NULL) : // Skeleton_blocker_complex(simplices, visitor_) { } // // /** // * @brief Constructor with a list of simplices // * @details The list of simplices must be the list of simplices of a simplicial complex. // */ // template // explicit Skeleton_blocker_complex(SimpleHandleOutputIterator simplex_begin,SimpleHandleOutputIterator simplex_end,bool is_flag_complex = false,Visitor* visitor_ = NULL) : // Skeleton_blocker_complex(simplex_begin,simplex_end,is_flag_complex, visitor_) { } // // // virtual ~Skeleton_blocker_complex() { } // // //@} // // /** // * Returns true iff the blocker 'sigma' is popable. // * To define popable, let us call 'L' the complex that // * consists in the current complex without the blocker 'sigma'. // * A blocker 'sigma' is then "popable" if the link of 'sigma' // * in L is reducible. // * // */ // bool is_popable_blocker(Blocker_handle sigma) const; // // /** // * Removes all the popable blockers of the complex and delete them. // * @returns the number of popable blockers deleted // */ // void remove_popable_blockers(); // // /** // * Removes all the popable blockers of the complex passing through v and delete them. // */ // void remove_popable_blockers(Vertex_handle v); // // /** // * @brief Removes all the popable blockers of the complex passing through v and delete them. // * Also remove popable blockers in the neighborhood if they became popable. // * // */ // void remove_all_popable_blockers(Vertex_handle v); // // /** // * Remove the star of the vertex 'v' // */ // void remove_star(Vertex_handle v) ; // //private: // /** // * after removing the star of a simplex, blockers sigma that contains this simplex must be removed. // * Furthermore, all simplices tau of the form sigma \setminus simplex_to_be_removed must be added // * whenever the dimension of tau is at least 2. // */ // void update_blockers_after_remove_star_of_vertex_or_edge(const Simplex_handle& simplex_to_be_removed); // //public: // /** // * Remove the star of the edge connecting vertices a and b. // * @returns the number of blocker that have been removed // */ // void remove_star(Vertex_handle a, Vertex_handle b) ; // // /** // * Remove the star of the edge 'e'. // */ // void remove_star(Edge_handle e) ; // // /** // * Remove the star of the simplex 'sigma' which needs to belong to the complex // */ // void remove_star(const Simplex_handle& sigma); // // /** // * @brief add a maximal simplex plus all its cofaces. // * @details the simplex must have dimension greater than one (otherwise use add_vertex or add_edge). // */ // void add_simplex(const Simplex_handle& sigma); // //private: // /** // * remove all blockers that contains sigma // */ // void remove_blocker_containing_simplex(const Simplex_handle& sigma) ; // // /** // * remove all blockers that contains sigma // */ // void remove_blocker_include_in_simplex(const Simplex_handle& sigma); // //public: // enum simplifiable_status { // NOT_HOMOTOPY_EQ, MAYBE_HOMOTOPY_EQ, HOMOTOPY_EQ // }; // // simplifiable_status is_remove_star_homotopy_preserving(const Simplex_handle& simplex) { // // todo write a virtual method 'link' in Skeleton_blocker_complex which will be overloaded by the current one of Skeleton_blocker_geometric_complex // // then call it there to build the link and return the value of link.is_contractible() // return MAYBE_HOMOTOPY_EQ; // } // // enum contractible_status { // NOT_CONTRACTIBLE, MAYBE_CONTRACTIBLE, CONTRACTIBLE // }; // // /** // * @brief %Test if the complex is reducible using a strategy defined in the class // * (by default it tests if the complex is a cone) // * @details Note that NO could be returned if some invariant ensures that the complex // * is not a point (for instance if the euler characteristic is different from 1). // * This function will surely have to return MAYBE in some case because the // * associated problem is undecidable but it in practice, it can often // * be solved with the help of geometry. // */ // virtual contractible_status is_contractible() const { // if (this->is_cone()) { // return CONTRACTIBLE; // } else { // return MAYBE_CONTRACTIBLE; // } // } // // /** @Edge contraction operations // */ // //@{ // // /** // * @return If ignore_popable_blockers is true // * then the result is true iff the link condition at edge ab is satisfied // * or equivalently iff no blocker contains ab. // * If ignore_popable_blockers is false then the // * result is true iff all blocker containing ab are popable. // */ // bool link_condition(Vertex_handle a, Vertex_handle b, bool ignore_popable_blockers = false) const{ // for (auto blocker : this->const_blocker_range(a)) // if (blocker->contains(b)) { // // false if ignore_popable_blockers is false // // otherwise the blocker has to be popable // return ignore_popable_blockers && is_popable_blocker(blocker); // } // return true; // // } // // /** // * @return If ignore_popable_blockers is true // * then the result is true iff the link condition at edge ab is satisfied // * or equivalently iff no blocker contains ab. // * If ignore_popable_blockers is false then the // * result is true iff all blocker containing ab are popable. // */ // bool link_condition(Edge_handle e, bool ignore_popable_blockers = false) const { // const Graph_edge& edge = (*this)[e]; // assert(this->get_address(edge.first())); // assert(this->get_address(edge.second())); // Vertex_handle a(*this->get_address(edge.first())); // Vertex_handle b(*this->get_address(edge.second())); // return link_condition(a, b, ignore_popable_blockers); // } // //protected: // /** // * Compute simplices beta such that a.beta is an order 0 blocker // * that may be used to construct a new blocker after contracting ab. // * It requires that the link condition is satisfied. // */ // void tip_blockers(Vertex_handle a, Vertex_handle b, std::vector & buffer) const; // //private: // /** // * @brief "Replace" the edge 'bx' by the edge 'ax'. // * Assume that the edge 'bx' was present whereas 'ax' was not. // * Precisely, it does not replace edges, but remove 'bx' and then add 'ax'. // * The visitor 'on_swaped_edge' is called just after edge 'ax' had been added // * and just before edge 'bx' had been removed. That way, it can // * eventually access to information of 'ax'. // */ // void swap_edge(Vertex_handle a, Vertex_handle b, Vertex_handle x); // //private: // /** // * @brief removes all blockers passing through the edge 'ab' // */ // void delete_blockers_around_vertex(Vertex_handle v); // // /** // * @brief removes all blockers passing through the edge 'ab' // */ // void delete_blockers_around_edge(Vertex_handle a, Vertex_handle b); // //public: // /** // * Contracts the edge. // * @remark If the link condition Link(ab) = Link(a) inter Link(b) is not satisfied, // * it removes first all blockers passing through 'ab' // */ // void contract_edge(Edge_handle edge) { // contract_edge(this->first_vertex(edge), this->second_vertex(edge)); // } // // /** // * Contracts the edge connecting vertices a and b. // * @remark If the link condition Link(ab) = Link(a) inter Link(b) is not satisfied, // * it removes first all blockers passing through 'ab' // */ // void contract_edge(Vertex_handle a, Vertex_handle b); // //private: // void get_blockers_to_be_added_after_contraction(Vertex_handle a, Vertex_handle b, std::set& blockers_to_add); // // /** // * delete all blockers that passes through a or b // */ // void delete_blockers_around_vertices(Vertex_handle a, Vertex_handle b); // void update_edges_after_contraction(Vertex_handle a, Vertex_handle b) ; // // void notify_changed_edges(Vertex_handle a) ; // //@} //}; template bool Skeleton_blocker_complex::is_popable_blocker(Blocker_handle sigma) const { assert(this->contains_blocker(*sigma)); Skeleton_blocker_link_complex link_blocker_sigma; build_link_of_blocker(*this, *sigma, link_blocker_sigma); bool res = link_blocker_sigma.is_contractible() == CONTRACTIBLE; return res; } /** * Removes all the popable blockers of the complex and delete them. * @returns the number of popable blockers deleted */ template void Skeleton_blocker_complex::remove_popable_blockers() { std::list vertex_to_check; for (auto v : this->vertex_range()) vertex_to_check.push_front(v); while (!vertex_to_check.empty()) { Vertex_handle v = vertex_to_check.front(); vertex_to_check.pop_front(); bool blocker_popable_found = true; while (blocker_popable_found) { blocker_popable_found = false; for (auto block : this->blocker_range(v)) { if (this->is_popable_blocker(block)) { for (Vertex_handle nv : *block) if (nv != v) vertex_to_check.push_back(nv); this->delete_blocker(block); blocker_popable_found = true; break; } } } } } /** * Removes all the popable blockers of the complex passing through v and delete them. */ template void Skeleton_blocker_complex::remove_popable_blockers(Vertex_handle v) { bool blocker_popable_found = true; while (blocker_popable_found) { blocker_popable_found = false; for (auto block : this->blocker_range(v)) { if (is_popable_blocker(block)) { this->delete_blocker(block); blocker_popable_found = true; } } } } /** * @brief Removes all the popable blockers of the complex passing through v and delete them. * Also remove popable blockers in the neighborhood if they became popable. * */ template void Skeleton_blocker_complex::remove_all_popable_blockers(Vertex_handle v) { std::list vertex_to_check; vertex_to_check.push_front(v); while (!vertex_to_check.empty()) { Vertex_handle v = vertex_to_check.front(); vertex_to_check.pop_front(); bool blocker_popable_found = true; while (blocker_popable_found) { blocker_popable_found = false; for (auto block : this->blocker_range(v)) { if (this->is_popable_blocker(block)) { for (Vertex_handle nv : *block) if (nv != v) vertex_to_check.push_back(nv); this->delete_blocker(block); blocker_popable_found = true; break; } } } } } template void Skeleton_blocker_complex::remove_star(Vertex_handle v) { // we remove the blockers that are not consistent anymore update_blockers_after_remove_star_of_vertex_or_edge(Simplex_handle(v)); while (this->degree(v) > 0) { Vertex_handle w(* (adjacent_vertices(v.vertex, this->skeleton).first)); this->remove_edge(v, w); } this->remove_vertex(v); } template void Skeleton_blocker_complex::update_blockers_after_remove_star_of_vertex_or_edge(const Simplex_handle& simplex_to_be_removed) { std::list blockers_to_update; if (simplex_to_be_removed.empty()) return; auto v0 = simplex_to_be_removed.first_vertex(); for (auto blocker : this->blocker_range(v0)) { if (blocker->contains(simplex_to_be_removed)) blockers_to_update.push_back(blocker); } for (auto blocker_to_update : blockers_to_update) { Simplex_handle sub_blocker_to_be_added; bool sub_blocker_need_to_be_added = (blocker_to_update->dimension() - simplex_to_be_removed.dimension()) >= 2; if (sub_blocker_need_to_be_added) { sub_blocker_to_be_added = *blocker_to_update; sub_blocker_to_be_added.difference(simplex_to_be_removed); } this->delete_blocker(blocker_to_update); if (sub_blocker_need_to_be_added) this->add_blocker(sub_blocker_to_be_added); } } template void Skeleton_blocker_complex::remove_star(Vertex_handle a, Vertex_handle b) { update_blockers_after_remove_star_of_vertex_or_edge(Simplex_handle(a, b)); // we remove the edge this->remove_edge(a, b); } /** * Remove the star of the edge 'e'. */ template void Skeleton_blocker_complex::remove_star(Edge_handle e) { return remove_star(this->first_vertex(e), this->second_vertex(e)); } template void Skeleton_blocker_complex::remove_star(const Simplex_handle& sigma) { assert(this->contains(sigma)); if (sigma.dimension() == 0) { remove_star(sigma.first_vertex()); } else if (sigma.dimension() == 1) { remove_star(sigma.first_vertex(), sigma.last_vertex()); } else { remove_blocker_containing_simplex(sigma); this->add_blocker(sigma); } } /** * @brief add a maximal simplex plus all its cofaces. * @details the simplex must have dimension greater than one (otherwise use add_vertex or add_edge). */ template void Skeleton_blocker_complex::add_simplex(const Simplex_handle& sigma) { assert(!this->contains(sigma)); assert(sigma.dimension() > 1); int num_vertex_to_add = 0; for(auto v : sigma) if(!contains_vertex(v)) ++num_vertex_to_add; while(num_vertex_to_add--) add_vertex(); for(auto u_it = sigma.begin(); u_it != sigma.end(); ++u_it) for(auto v_it = u_it; ++v_it != sigma.end(); /**/){ std::cout <<"add edge"<<*u_it<<" "<<*v_it< void Skeleton_blocker_complex::remove_blocker_containing_simplex(const Simplex_handle& sigma) { std::vector blockers_to_remove; for (auto blocker : this->blocker_range(sigma.first_vertex())) { if (blocker->contains(sigma)) blockers_to_remove.push_back(blocker); } for (auto blocker_to_update : blockers_to_remove) this->delete_blocker(blocker_to_update); } /** * remove all blockers that contains sigma */ template void Skeleton_blocker_complex::remove_blocker_include_in_simplex(const Simplex_handle& sigma) { std::vector blockers_to_remove; for (auto blocker : this->blocker_range(sigma.first_vertex())) { if (sigma.contains(*blocker)) blockers_to_remove.push_back(blocker); } for (auto blocker_to_update : blockers_to_remove) this->delete_blocker(blocker_to_update); } template void Skeleton_blocker_complex::tip_blockers(Vertex_handle a, Vertex_handle b, std::vector & buffer) const { for (auto const & blocker : this->const_blocker_range(a)) { Simplex_handle beta = (*blocker); beta.remove_vertex(a); buffer.push_back(beta); } Simplex_handle n; this->add_neighbours(b, n); this->remove_neighbours(a, n); n.remove_vertex(a); for (Vertex_handle y : n) { Simplex_handle beta; beta.add_vertex(y); buffer.push_back(beta); } } template void Skeleton_blocker_complex::swap_edge(Vertex_handle a, Vertex_handle b, Vertex_handle x) { this->add_edge(a, x); if (this->visitor) this->visitor->on_swaped_edge(a, b, x); this->remove_edge(b, x); } template void Skeleton_blocker_complex::delete_blockers_around_vertex(Vertex_handle v) { std::list blockers_to_delete; for (auto blocker : this->blocker_range(v)) { blockers_to_delete.push_back(blocker); } while (!blockers_to_delete.empty()) { this->remove_blocker(blockers_to_delete.back()); blockers_to_delete.pop_back(); } } template void Skeleton_blocker_complex::delete_blockers_around_edge(Vertex_handle a, Vertex_handle b) { std::list blocker_to_delete; for (auto blocker : this->blocker_range(a)) if (blocker->contains(b)) blocker_to_delete.push_back(blocker); while (!blocker_to_delete.empty()) { this->delete_blocker(blocker_to_delete.back()); blocker_to_delete.pop_back(); } } template void Skeleton_blocker_complex::contract_edge(Vertex_handle a, Vertex_handle b) { assert(this->contains_vertex(a)); assert(this->contains_vertex(b)); assert(this->contains_edge(a, b)); // if some blockers passes through 'ab', we remove them. if (!link_condition(a, b)) delete_blockers_around_edge(a, b); std::set blockers_to_add; get_blockers_to_be_added_after_contraction(a, b, blockers_to_add); delete_blockers_around_vertices(a, b); update_edges_after_contraction(a, b); this->remove_vertex(b); notify_changed_edges(a); for (auto block : blockers_to_add) this->add_blocker(block); assert(this->contains_vertex(a)); assert(!this->contains_vertex(b)); } template void Skeleton_blocker_complex::get_blockers_to_be_added_after_contraction(Vertex_handle a, Vertex_handle b, std::set& blockers_to_add) { blockers_to_add.clear(); typedef Skeleton_blocker_link_complex > LinkComplexType; LinkComplexType link_a(*this, a); LinkComplexType link_b(*this, b); std::vector vector_alpha, vector_beta; tip_blockers(a, b, vector_alpha); tip_blockers(b, a, vector_beta); for (auto alpha = vector_alpha.begin(); alpha != vector_alpha.end(); ++alpha) { for (auto beta = vector_beta.begin(); beta != vector_beta.end(); ++beta) { Simplex_handle sigma = *alpha; sigma.union_vertices(*beta); Root_simplex_handle sigma_id = this->get_id(sigma); if (this->contains(sigma) && proper_faces_in_union>(sigma_id, link_a, link_b)) { // Blocker_handle blocker = new Simplex_handle(sigma); sigma.add_vertex(a); blockers_to_add.insert(sigma); } } } } template void Skeleton_blocker_complex::delete_blockers_around_vertices(Vertex_handle a, Vertex_handle b) { std::vector blocker_to_delete; for (auto bl : this->blocker_range(a)) blocker_to_delete.push_back(bl); for (auto bl : this->blocker_range(b)) blocker_to_delete.push_back(bl); while (!blocker_to_delete.empty()) { this->delete_blocker(blocker_to_delete.back()); blocker_to_delete.pop_back(); } } template void Skeleton_blocker_complex::update_edges_after_contraction(Vertex_handle a, Vertex_handle b) { // We update the set of edges this->remove_edge(a, b); // For all edges {b,x} incident to b, // we remove {b,x} and add {a,x} if not already there. while (this->degree(b) > 0) { Vertex_handle x(*(adjacent_vertices(b.vertex, this->skeleton).first)); if (!this->contains_edge(a, x)) // we 'replace' the edge 'bx' by the edge 'ax' this->swap_edge(a, b, x); else this->remove_edge(b, x); } } template void Skeleton_blocker_complex::notify_changed_edges(Vertex_handle a){ // We notify the visitor that all edges incident to 'a' had changed boost_adjacency_iterator v, v_end; for (tie(v, v_end) = adjacent_vertices(a.vertex, this->skeleton); v != v_end; ++v) if (this->visitor) this->visitor->on_changed_edge(a, Vertex_handle(*v)); } } // namespace skbl } // namespace Gudhi #endif // SRC_SKELETON_BLOCKER_INCLUDE_GUDHI_SKELETON_BLOCKER_SIMPLIFIABLE_COMPLEX_H_