/* This file is part of the Gudhi Library. The Gudhi library * (Geometric Understanding in Higher Dimensions) is a generic C++ * library for computational topology. * * Author(s): Siargey Kachanovich * * Copyright (C) 2015 INRIA Sophia Antipolis-Méditerranée (France) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #ifndef LANDMARK_CHOICE_BY_FARTHEST_POINT_H_ #define LANDMARK_CHOICE_BY_FARTHEST_POINT_H_ #include #include #include // for sort #include #include #include namespace Gudhi { template < typename Point_d, typename Heap, typename Tree, typename Presence_table > void update_heap( Point_d &l, unsigned nbL, Heap &heap, Tree &tree, Presence_table &table) { auto search = tree.query_incremental_ANN(l); for (auto w: search) { if (table[w.first].first) if (w.second < table[w.first].second->second) { heap.update(table[w.first].second, w); } } } /** * \ingroup witness_complex * \brief Landmark choice strategy by iteratively adding the farthest witness from the * current landmark set as the new landmark. * \details It chooses nbL landmarks from a random access range `points` and * writes {witness}*{closest landmarks} matrix in `knn`. * * The type KNearestNeighbors can be seen as * Witness_range>, where * Witness_range and Closest_landmark_range are random access ranges * */ template < typename Kernel, typename Point_container, typename OutputIterator> void landmark_choice_by_farthest_point( Kernel& k, Point_container const &points, int nbL, OutputIterator output_it) { // typedef typename Kernel::FT FT; // typedef std::pair Heap_node; // struct R_max_compare // { // bool operator()(const Heap_node &rmh1, const Heap_node &rmh2) const // { // return rmh1.second < rmh2.second; // } // }; // typedef boost::heap::fibonacci_heap> Heap; // typedef Spatial_tree_data_structure Tree; // typedef std::vector< std::pair > Presence_table; typename Kernel::Squared_distance_d sqdist = k.squared_distance_d_object(); // Tree tree(points); // Heap heap; // Presence_table table(points.size()); // for (auto p: table) // std::cout << p.first << "\n"; // int number_landmarks = 0; // number of treated landmarks // double curr_max_dist = 0; // used for defining the furhest point from L // const double infty = std::numeric_limits::infinity(); // infinity (see next entry) // std::vector< double > dist_to_L(points.size(), infty); // vector of current distances to L from points // // Choose randomly the first landmark // std::random_device rd; // std::mt19937 gen(rd()); // std::uniform_int_distribution<> dis(1, 6); // int curr_landmark = dis(gen); // do { // *output_landmarks++ = points[curr_landmark]; // std::cout << curr_landmark << "\n"; // number_landmarks++; // } // while (number_landmarks < nbL); // } int nb_points = boost::size(points); assert(nb_points >= nbL); int current_number_of_landmarks = 0; // counter for landmarks double curr_max_dist = 0; // used for defining the furhest point from L const double infty = std::numeric_limits::infinity(); // infinity (see next entry) std::vector< double > dist_to_L(nb_points, infty); // vector of current distances to L from points // Choose randomly the first landmark std::random_device rd; std::mt19937 gen(rd()); std::uniform_int_distribution<> dis(1, 6); int curr_max_w = dis(gen); for (current_number_of_landmarks = 0; current_number_of_landmarks != nbL; current_number_of_landmarks++) { // curr_max_w at this point is the next landmark *output_it++ = points[curr_max_w]; std::cout << curr_max_w << "\n"; unsigned i = 0; for (auto& p : points) { double curr_dist = sqdist(p, *(std::begin(points) + curr_max_w)); if (curr_dist < dist_to_L[i]) dist_to_L[i] = curr_dist; ++i; } // choose the next curr_max_w curr_max_dist = 0; for (i = 0; i < dist_to_L.size(); i++) if (dist_to_L[i] > curr_max_dist) { curr_max_dist = dist_to_L[i]; curr_max_w = i; } } } } // namespace Gudhi #endif // LANDMARK_CHOICE_BY_FARTHEST_POINT_H_