#ifndef PROTECTED_SETS_H #define PROTECTED_SETS_H #include #include #include #include #include #include #include #include #include #include #include #include #include "output_tikz.h" typedef CGAL::Epick_d K; typedef K::Point_d Point_d; typedef K::Line_d Line_d; typedef K::Vector_d Vector_d; typedef K::Oriented_side_d Oriented_side_d; typedef K::Has_on_positive_side_d Has_on_positive_side_d; typedef K::Sphere_d Sphere_d; typedef K::Hyperplane_d Hyperplane_d; typedef CGAL::Delaunay_triangulation Delaunay_triangulation; typedef Delaunay_triangulation::Facet Facet; typedef Delaunay_triangulation::Vertex_handle Delaunay_vertex; typedef Delaunay_triangulation::Full_cell_handle Full_cell_handle; typedef std::vector Point_Vector; typedef CGAL::Euclidean_distance Euclidean_distance; typedef CGAL::Search_traits_adapter< std::ptrdiff_t, Point_d*, Traits_base> STraits; //typedef K TreeTraits; //typedef CGAL::Distance_adapter Euclidean_adapter; //typedef CGAL::Kd_tree Kd_tree; typedef CGAL::Orthogonal_k_neighbor_search> K_neighbor_search; typedef K_neighbor_search::Tree Tree; typedef K_neighbor_search::Distance Distance; typedef K_neighbor_search::iterator KNS_iterator; typedef K_neighbor_search::iterator KNS_range; typedef CGAL::Fuzzy_sphere Fuzzy_sphere; FT _sfty = pow(10,-14); bool experiment1, experiment2 = false; /* Experiment 1: epsilon as function on time **********************/ std::vector eps_vector; /* Experiment 2: R/epsilon on delta *******************************/ std::vector epsratio_vector; /////////////////////////////////////////////////////////////////////////////////////////////////////////// // AUXILLARY FUNCTIONS /////////////////////////////////////////////////////////////////////////////////////////////////////////// /** Insert a point in Delaunay triangulation. If you are working in a flat torus, the procedure adds all the 3^d copies in adjacent cubes as well * * W is the initial point vector * chosen_landmark is the index of the chosen point in W * landmarks_ind is the vector of indices of already chosen points in W * delaunay is the Delaunay triangulation * landmark_count is the current number of chosen vertices * torus is true iff you are working on a flat torus [-1,1]^d * OUT: Vertex handle to the newly inserted point */ Delaunay_vertex insert_delaunay_landmark_with_copies(Point_Vector& W, int chosen_landmark, std::vector& landmarks_ind, Delaunay_triangulation& delaunay, int& landmark_count, bool torus) { if (!torus) { Delaunay_vertex v =delaunay.insert(W[chosen_landmark]); landmarks_ind.push_back(chosen_landmark); landmark_count++; return v; } else { int D = W[0].size(); int nb_cells = pow(3, D); Delaunay_vertex v; for (int i = 0; i < nb_cells; ++i) { std::vector point; int cell_i = i; for (int l = 0; l < D; ++l) { point.push_back(W[chosen_landmark][l] + 2.0*(cell_i%3-1)); cell_i /= 3; } if (i == nb_cells/2) v = delaunay.insert(point); //v = center point else delaunay.insert(point); } landmarks_ind.push_back(chosen_landmark); landmark_count++; return v; } } /** Small check if the vertex v is in the full cell fc */ bool vertex_is_in_full_cell(Delaunay_triangulation::Vertex_handle v, Full_cell_handle fc) { for (auto v_it = fc->vertices_begin(); v_it != fc->vertices_end(); ++v_it) if (*v_it == v) return true; return false; } /** Fill chosen point vector from indices with copies if you are working on a flat torus * * IN: W is the point vector * OUT: landmarks is the output vector * IN: landmarks_ind is the vector of indices * IN: torus is true iff you are working on a flat torus [-1,1]^d */ void fill_landmarks(Point_Vector& W, Point_Vector& landmarks, std::vector& landmarks_ind, bool torus) { if (!torus) for (unsigned j = 0; j < landmarks_ind.size(); ++j) landmarks.push_back(W[landmarks_ind[j]]); else { int D = W[0].size(); int nb_cells = pow(3, D); int nbL = landmarks_ind.size(); // Fill landmarks for (int i = 0; i < nb_cells-1; ++i) for (int j = 0; j < nbL; ++j) { int cell_i = i; Point_d point; for (int l = 0; l < D; ++l) { point.push_back(W[landmarks_ind[j]][l] + 2.0*(cell_i-1)); cell_i /= 3; } landmarks.push_back(point); } } } /** Fill a vector of all simplices in the Delaunay triangulation giving integer indices to vertices * * IN: t is the Delaunay triangulation * OUT: full_cells is the output vector */ void fill_full_cell_vector(Delaunay_triangulation& t, std::vector>& full_cells) { // Store vertex indices in a map int ind = 0; //index of a vertex std::map index_of_vertex; for (auto v_it = t.vertices_begin(); v_it != t.vertices_end(); ++v_it) if (t.is_infinite(v_it)) continue; else index_of_vertex[v_it] = ind++; // Write full cells as vectors in full_cells for (auto fc_it = t.full_cells_begin(); fc_it != t.full_cells_end(); ++fc_it) { if (t.is_infinite(fc_it)) continue; Point_Vector vertices; for (auto fc_v_it = fc_it->vertices_begin(); fc_v_it != fc_it->vertices_end(); ++fc_v_it) vertices.push_back((*fc_v_it)->point()); Sphere_d cs( vertices.begin(), vertices.end()); Point_d csc = cs.center(); bool in_cube = true; for (auto xi = csc.cartesian_begin(); xi != csc.cartesian_end(); ++xi) if (*xi > 1.0 || *xi < -1.0) { in_cube = false; break; } if (!in_cube) continue; std::vector cell; for (auto v_it = fc_it->vertices_begin(); v_it != fc_it->vertices_end(); ++v_it) cell.push_back(index_of_vertex[*v_it]); full_cells.push_back(cell); } } bool sphere_intersects_cube(Point_d& c, FT r) { bool in_cube = true; // int i = 0, D = p.size(); for (auto xi = c.cartesian_begin(); xi != c.cartesian_end(); ++xi) // if ((*xi < 1.0 || *xi > -1.0) && // (*xi-r < 1.0 || *xi-r > -1.0) && // (*xi+r < 1.0 || *xi+r > -1.0)) if ((*xi-r < -1.0 && *xi+r < -1.0) || (*xi-r > 1.0 && *xi+r > 1.0 )) { in_cube = false; break; } return in_cube; } /** Recursive function for checking if the simplex is good, * meaning it does not contain a k-face, which is not theta0^(k-1) thick */ bool is_theta0_good(std::vector& vertices, FT theta0) { if (theta0 > 1) { std::cout << "Warning! theta0 is set > 1\n"; return false; } int D = vertices.size()-1; if (D <= 1) return true; // Edges are always good //******** Circumscribed sphere Euclidean_distance ed; Sphere_d cs(vertices.begin(), vertices.end()); FT r = sqrt(cs.squared_radius()); for (std::vector::iterator v_it = vertices.begin(); v_it != vertices.end(); ++v_it) { std::vector facet; for (std::vector::iterator f_it = vertices.begin(); f_it != vertices.end(); ++f_it) if (f_it != v_it) facet.push_back(*f_it); // Compute the altitude if (vertices[0].size() == 3 && D == 2) { //Vector_d l = facet[0] - facet[1]; FT orth_length2 = ed.transformed_distance(facet[0],facet[1]); K::Cartesian_const_iterator_d l_it, p_it, s_it, c_it; FT h = 0; // Scalar product = FT scalar = 0; for (p_it = v_it->cartesian_begin(), s_it = facet[0].cartesian_begin(), l_it = facet[1].cartesian_begin(); p_it != v_it->cartesian_end(); ++l_it, ++p_it, ++s_it) scalar += (*l_it - *s_it)*(*p_it - *s_it); // Gram-Schmidt for one vector for (p_it = v_it->cartesian_begin(), s_it = facet[0].cartesian_begin(), l_it = facet[1].cartesian_begin(); p_it != v_it->cartesian_end(); ++l_it, ++p_it, ++s_it) { FT hx = (*p_it - *s_it) - scalar*(*l_it - *s_it)/orth_length2; h += hx*hx; } h = sqrt(h); if (h/(2*r) < pow(theta0, D-1)) return false; if (!is_theta0_good(facet, theta0)) return false; } else { Hyperplane_d tau_h(facet.begin(), facet.end(), *v_it); Vector_d orth_tau = tau_h.orthogonal_vector(); FT orth_length = sqrt(orth_tau.squared_length()); K::Cartesian_const_iterator_d o_it, p_it, s_it, c_it; FT h = 0; for (o_it = orth_tau.cartesian_begin(), p_it = v_it->cartesian_begin(), s_it = (facet.begin())->cartesian_begin(); o_it != orth_tau.cartesian_end(); ++o_it, ++p_it, ++s_it) h += (*o_it)*(*p_it - *s_it)/orth_length; h = fabs(h); if (h/(2*r) < pow(theta0, D-1)) return false; if (!is_theta0_good(facet, theta0)) return false; } } return true; } //////////////////////////////////////////////////////////////////////////////////////////////////////////// // IS VIOLATED TEST //////////////////////////////////////////////////////////////////////////////////////////////////////////// /** Check if a newly created cell is protected from old vertices * * t is the Delaunay triangulation * vertices is the vector containing the point to insert and a facet f in t * v1 is the vertex of t, such that f and v1 form a simplex * v2 is the vertex of t, such that f and v2 form another simplex * delta is the protection constant * power_protection is true iff the delta-power protection is used */ bool new_cell_is_violated(Delaunay_triangulation& t, std::vector& vertices, const Delaunay_vertex& v1, const Delaunay_vertex v2, FT delta, bool power_protection, FT theta0) { assert(vertices.size() == vertices[0].size() || vertices.size() == vertices[0].size() + 1); //simplex size = d | d+1 assert(v1 != v2); if (vertices.size() == vertices[0].size() + 1) // FINITE CASE { Sphere_d cs(vertices.begin(), vertices.end()); Point_d center_cs = cs.center(); FT r = sqrt(Euclidean_distance().transformed_distance(center_cs, vertices[0])); /* for (auto v_it = t.vertices_begin(); v_it != t.vertices_end(); ++v_it) if (!t.is_infinite(v_it)) { //CGAL::Oriented_side side = Oriented_side_d()(cs, (v_it)->point()); if (std::find(vertices.begin(), vertices.end(), v_it->point()) == vertices.end()) { FT dist2 = Euclidean_distance().transformed_distance(center_cs, (v_it)->point()); if (!power_protection) if (dist2 >= r*r-_sfty && dist2 <= (r+delta)*(r+delta)) return true; if (power_protection) if (dist2 >= r*r-_sfty && dist2 <= r*r+delta*delta) return true; } } */ // Check if the simplex is theta0-good if (!is_theta0_good(vertices, theta0)) return true; // Is the center inside the box? (only Euclidean case) // if (!torus) // { // bool inside_the_box = true; // for (c_it = center_cs.cartesian_begin(); c_it != center_cs.cartesian_end(); ++c_it) // if (*c_it > 1.0 || *c_it < -1.0) // { // inside_the_box = false; break; // } // if (inside_the_box && h/r < theta0) // return true; // } // Check the two vertices (if not infinite) if (!t.is_infinite(v1)) { FT dist2 = Euclidean_distance().transformed_distance(center_cs, v1->point()); if (!power_protection) if (dist2 >= r*r-_sfty && dist2 <= (r+delta)*(r+delta)) return true; if (power_protection) if (dist2 >= r*r-_sfty && dist2 <= r*r+delta*delta) return true; } if (!t.is_infinite(v2)) { FT dist2 = Euclidean_distance().transformed_distance(center_cs, v2->point()); if (!power_protection) if (dist2 >= r*r-_sfty && dist2 <= (r+delta)*(r+delta)) return true; if (power_protection) if (dist2 >= r*r-_sfty && dist2 <= r*r+delta*delta) return true; } } else // INFINITE CASE { Delaunay_triangulation::Vertex_iterator v = t.vertices_begin(); while (t.is_infinite(v) || std::find(vertices.begin(), vertices.end(), v->point()) == vertices.end()) v++; Hyperplane_d facet_plane(vertices.begin(), vertices.end(), v->point(), CGAL::ON_POSITIVE_SIDE); Vector_d orth_v = facet_plane.orthogonal_vector(); /* for (auto v_it = t.vertices_begin(); v_it != t.vertices_end(); ++v_it) if (!t.is_infinite(v_it)) if (std::find(vertices.begin(), vertices.end(), v_it->point()) == vertices.end()) { std::vector coords; Point_d p = v_it->point(); auto orth_i = orth_v.cartesian_begin(), p_i = p.cartesian_begin(); for (; orth_i != orth_v.cartesian_end(); ++orth_i, ++p_i) coords.push_back((*p_i) - (*orth_i) * delta / sqrt(orth_v.squared_length())); Point_d p_delta = Point_d(coords); bool p_is_inside = !Has_on_positive_side_d()(facet_plane, p); bool p_delta_is_inside = !Has_on_positive_side_d()(facet_plane, p_delta); if (!p_is_inside && p_delta_is_inside) return true; } */ if (!t.is_infinite(v1)) { std::vector coords; Point_d p = v1->point(); auto orth_i = orth_v.cartesian_begin(), p_i = p.cartesian_begin(); for (; orth_i != orth_v.cartesian_end(); ++orth_i, ++p_i) coords.push_back((*p_i) - (*orth_i) * delta / sqrt(orth_v.squared_length())); Point_d p_delta = Point_d(coords); bool p_is_inside = !Has_on_positive_side_d()(facet_plane, p); bool p_delta_is_inside = !Has_on_positive_side_d()(facet_plane, p_delta); if (!power_protection && !p_is_inside && p_delta_is_inside) return true; } if (!t.is_infinite(v2)) { std::vector coords; Point_d p = v2->point(); auto orth_i = orth_v.cartesian_begin(), p_i = p.cartesian_begin(); for (; orth_i != orth_v.cartesian_end(); ++orth_i, ++p_i) coords.push_back((*p_i) - (*orth_i) * delta / sqrt(orth_v.squared_length())); Point_d p_delta = Point_d(coords); bool p_is_inside = !Has_on_positive_side_d()(facet_plane, p); bool p_delta_is_inside = !Has_on_positive_side_d()(facet_plane, p_delta); if (!power_protection && !p_is_inside && p_delta_is_inside) return true; } } return false; } /** Auxillary recursive function to check if the point p violates the protection of the cell c and * if there is a violation of an eventual new cell * * p is the point to insert * t is the current triangulation * c is the current cell (simplex) * parent_cell is the parent cell (simplex) * index is the index of the facet between c and parent_cell from parent_cell's point of view * D is the dimension of the triangulation * delta is the protection constant * marked_cells is the vector of all visited cells containing p in their circumscribed ball * power_protection is true iff you are working with delta-power protection * * OUT: true iff inserting p hasn't produced any violation so far */ bool is_violating_protection(Point_d& p, Delaunay_triangulation& t, Full_cell_handle c, Full_cell_handle parent_cell, int index, int D, FT delta, std::vector& marked_cells, bool power_protection, FT theta0) { Euclidean_distance ed; std::vector vertices; if (!t.is_infinite(c)) { // if the cell is finite, we look if the protection is violated for (auto v_it = c->vertices_begin(); v_it != c->vertices_end(); ++v_it) vertices.push_back((*v_it)->point()); Sphere_d cs( vertices.begin(), vertices.end()); Point_d center_cs = cs.center(); FT r = sqrt(ed.transformed_distance(center_cs, vertices[0])); FT dist2 = ed.transformed_distance(center_cs, p); // if the new point is inside the protection ball of a non conflicting simplex if (!power_protection) if (dist2 >= r*r-_sfty && dist2 <= (r+delta)*(r+delta)) return true; if (power_protection) if (dist2 >= r*r-_sfty && dist2 <= r*r+delta*delta) return true; // if the new point is inside the circumscribing ball : continue violation searching on neighbours //if (dist2 < r*r) //if (dist2 < (5*r+delta)*(5*r+delta)) if (dist2 < r*r) { c->tds_data().mark_visited(); marked_cells.push_back(c); for (int i = 0; i < D+1; ++i) { Full_cell_handle next_c = c->neighbor(i); if (next_c->tds_data().is_clear() && is_violating_protection(p, t, next_c, c, i, D, delta, marked_cells, power_protection, theta0)) return true; } } // if the new point is outside the protection sphere else { // facet f is on the border of the conflict zone : check protection of simplex {p,f} // the new simplex is guaranteed to be finite vertices.clear(); vertices.push_back(p); for (int i = 0; i < D+1; ++i) if (i != index) vertices.push_back(parent_cell->vertex(i)->point()); Delaunay_vertex vertex_to_check = t.infinite_vertex(); for (auto vh_it = c->vertices_begin(); vh_it != c->vertices_end(); ++vh_it) if (!vertex_is_in_full_cell(*vh_it, parent_cell)) { vertex_to_check = *vh_it; break; } if (new_cell_is_violated(t, vertices, vertex_to_check, parent_cell->vertex(index), delta, power_protection, theta0)) //if (new_cell_is_violated(t, vertices, vertex_to_check->point(), delta)) return true; } } else { // Inside of the convex hull is + side. Outside is - side. for (auto vh_it = c->vertices_begin(); vh_it != c->vertices_end(); ++vh_it) if (!t.is_infinite(*vh_it)) vertices.push_back((*vh_it)->point()); Delaunay_triangulation::Vertex_iterator v_it = t.vertices_begin(); while (t.is_infinite(v_it) || vertex_is_in_full_cell(v_it, c)) v_it++; Hyperplane_d facet_plane(vertices.begin(), vertices.end(), v_it->point(), CGAL::ON_POSITIVE_SIDE); //CGAL::Oriented_side outside = Oriented_side_d()(facet_plane, v_it->point()); Vector_d orth_v = facet_plane.orthogonal_vector(); std::vector coords; auto orth_i = orth_v.cartesian_begin(), p_i = p.cartesian_begin(); for (; orth_i != orth_v.cartesian_end(); ++orth_i, ++p_i) coords.push_back((*p_i) - (*orth_i) * delta / sqrt(orth_v.squared_length())); Point_d p_delta = Point_d(coords); bool p_is_inside = !Has_on_positive_side_d()(facet_plane, p) && (Oriented_side_d()(facet_plane, p) != CGAL::ZERO); bool p_delta_is_inside = !Has_on_positive_side_d()(facet_plane, p_delta); // If we work with power protection, we just ignore any conflicts if (!power_protection && !p_is_inside && p_delta_is_inside) return true; //if the cell is infinite we look at the neighbours regardless if (p_is_inside) { c->tds_data().mark_visited(); marked_cells.push_back(c); for (int i = 0; i < D+1; ++i) { Full_cell_handle next_c = c->neighbor(i); if (next_c->tds_data().is_clear() && is_violating_protection(p, t, next_c, c, i, D, delta, marked_cells, power_protection, theta0)) return true; } } else { // facet f is on the border of the conflict zone : check protection of simplex {p,f} // the new simplex is finite if the parent cell is finite vertices.clear(); vertices.push_back(p); for (int i = 0; i < D+1; ++i) if (i != index) if (!t.is_infinite(parent_cell->vertex(i))) vertices.push_back(parent_cell->vertex(i)->point()); Delaunay_vertex vertex_to_check = t.infinite_vertex(); for (auto vh_it = c->vertices_begin(); vh_it != c->vertices_end(); ++vh_it) if (!vertex_is_in_full_cell(*vh_it, parent_cell)) { vertex_to_check = *vh_it; break; } if (new_cell_is_violated(t, vertices, vertex_to_check, parent_cell->vertex(index), delta, power_protection, theta0)) //if (new_cell_is_violated(t, vertices, vertex_to_check->point(), delta)) return true; } } //c->tds_data().clear_visited(); //marked_cells.pop_back(); return false; } /** Checks if inserting the point p in t will make conflicts * * p is the point to insert * t is the current triangulation * D is the dimension of triangulation * delta is the protection constant * power_protection is true iff you are working with delta-power protection * OUT: true iff inserting p produces a violation of delta-protection. */ bool is_violating_protection(Point_d& p, Delaunay_triangulation& t, int D, FT delta, bool power_protection, FT theta0) { Euclidean_distance ed; Delaunay_triangulation::Vertex_handle v; Delaunay_triangulation::Face f(t.current_dimension()); Delaunay_triangulation::Facet ft; Delaunay_triangulation::Full_cell_handle c; Delaunay_triangulation::Locate_type lt; std::vector marked_cells; //c = t.locate(p, lt, f, ft, v); c = t.locate(p); bool violation_existing_cells = is_violating_protection(p, t, c, c, 0, D, delta, marked_cells, power_protection, theta0); for (Full_cell_handle fc : marked_cells) fc->tds_data().clear(); return violation_existing_cells; } //////////////////////////////////////////////////////////////////////// // INITIALIZATION //////////////////////////////////////////////////////////////////////// // Query for a sphere near a cite in all copies of a torus // OUT points_inside void torus_search(Tree& treeW, int D, Point_d cite, FT r, std::vector& points_inside) { int nb_cells = pow(3, D); Delaunay_vertex v; for (int i = 0; i < nb_cells; ++i) { std::vector cite_copy; int cell_i = i; for (int l = 0; l < D; ++l) { cite_copy.push_back(cite[l] + 2.0*(cell_i%3-1)); cell_i /= 3; } Fuzzy_sphere fs(cite_copy, r, 0, treeW.traits()); treeW.search(std::insert_iterator>(points_inside, points_inside.end()), fs); } } void initialize_torus(Point_Vector& W, Tree& treeW, Delaunay_triangulation& t, FT epsilon, std::vector& landmarks_ind, int& landmark_count) { int D = W[0].size(); if (D == 2) { int xw = 6, yw = 4; // Triangular lattice close to regular triangles h=0.866a ~ 0.875a : 48p for (int i = 0; i < xw; ++i) for (int j = 0; j < yw; ++j) { Point_d cite1(std::vector{2.0/xw*i, 1.0/yw*j}); std::vector points_inside; torus_search(treeW, D, cite1, epsilon, points_inside); assert(points_inside.size() > 0); insert_delaunay_landmark_with_copies(W, *(points_inside.begin()), landmarks_ind, t, landmark_count, true); Point_d cite2(std::vector{2.0/xw*(i+0.5), 1.0/yw*(j+0.5)}); points_inside.clear(); torus_search(treeW, D, cite2, epsilon, points_inside); assert(points_inside.size() > 0); insert_delaunay_landmark_with_copies(W, *(points_inside.begin()), landmarks_ind, t, landmark_count, true); } } else if (D == 3) { int wd = 3; // Body-centered cubic lattice : 54p for (int i = 0; i < wd; ++i) for (int j = 0; j < wd; ++j) for (int k = 0; k < wd; ++k) { Point_d cite1(std::vector{2.0/wd*i, 2.0/wd*j, 2.0/wd*k}); std::vector points_inside; torus_search(treeW, D, cite1, epsilon, points_inside); assert(points_inside.size() > 0); insert_delaunay_landmark_with_copies(W, *(points_inside.begin()), landmarks_ind, t, landmark_count, true); Point_d cite2(std::vector{2.0/wd*(i+0.5), 2.0/wd*(j+0.5), 2.0/wd*(k+0.5)}); points_inside.clear(); torus_search(treeW, D, cite2, epsilon, points_inside); assert(points_inside.size() > 0); insert_delaunay_landmark_with_copies(W, *(points_inside.begin()), landmarks_ind, t, landmark_count, true); } } } /////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////// //!!!!!!!!!!!!! THE INTERFACE FOR LANDMARK CHOICE IS BELOW !!!!!!!!!!// /////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////// // Struct for R_max_heap elements struct R_max_handle { FT value; Point_d center; R_max_handle(FT value_, Point_d c): value(value_), center(c) {} }; struct R_max_compare { bool operator()(const R_max_handle& rmh1, const R_max_handle& rmh2) const { return rmh1.value < rmh2.value; } }; // typedef boost::heap::fibonacci_heap> Heap; // void make_heap(Delaunay_triangulation& t, Heap& R_max_heap) // { // R_max_heap.clear(); // for (auto fc_it = t.full_cells_begin(); fc_it != t.full_cells_end(); ++fc_it) // { // if (t.is_infinite(fc_it)) // continue; // Point_Vector vertices; // for (auto fc_v_it = fc_it->vertices_begin(); fc_v_it != fc_it->vertices_end(); ++fc_v_it) // vertices.push_back((*fc_v_it)->point()); // Sphere_d cs( vertices.begin(), vertices.end()); // Point_d csc = cs.center(); // FT r = sqrt(cs.squared_radius()); // // A ball is in the heap, if it intersects the cube // bool accepted = sphere_intersects_cube(csc, sqrt(r)); // if (!accepted) // continue; // R_max_heap.push(R_max_handle(r, fc_it, csc)); // } // } ////////////////////////////////////////////////////////////////////////////////////////////////////////// // SAMPLING RADIUS ////////////////////////////////////////////////////////////////////////////////////////////////////////// R_max_handle sampling_radius(Delaunay_triangulation& t) { FT epsilon2 = 0; Point_d final_center; Point_d control_point; for (auto fc_it = t.full_cells_begin(); fc_it != t.full_cells_end(); ++fc_it) { if (t.is_infinite(fc_it)) continue; Point_Vector vertices; for (auto fc_v_it = fc_it->vertices_begin(); fc_v_it != fc_it->vertices_end(); ++fc_v_it) vertices.push_back((*fc_v_it)->point()); Sphere_d cs( vertices.begin(), vertices.end()); Point_d csc = cs.center(); bool in_cube = true; for (auto xi = csc.cartesian_begin(); xi != csc.cartesian_end(); ++xi) if (*xi > 1.0 || *xi < -1.0) { in_cube = false; break; } if (!in_cube) continue; FT r2 = Euclidean_distance().transformed_distance(cs.center(), *(vertices.begin())); if (epsilon2 < r2) { epsilon2 = r2; final_center = csc; control_point = (*vertices.begin()); } } return R_max_handle(sqrt(epsilon2), final_center); } /////////////////////////////////////////////////////////////////////// // LANDMARK CHOICE PROCEDURE /////////////////////////////////////////////////////////////////////// /** Procedure to compute a maximal protected subset from a point cloud. All OUTs should be empty at call. * * IN: W is the initial point cloud having type Epick_d::Point_d * IN: nbP is the size of W * OUT: landmarks is the output vector for the points * OUT: landmarks_ind is the output vector for the indices of the selected points in W * IN: delta is the constant of protection * OUT: full_cells is the output vector of the simplices in the final Delaunay triangulation * IN: torus is true iff you are working on a flat torus [-1,1]^d */ void protected_delaunay(Point_Vector& W, //Point_Vector& landmarks, std::vector& landmarks_ind, FT delta, FT epsilon, FT alpha, FT theta0, //std::vector>& full_cells, bool torus, bool power_protection ) { //bool return_ = true; unsigned D = W[0].size(); int nbP = W.size(); Torus_distance td; Euclidean_distance ed; Delaunay_triangulation t(D); CGAL::Random rand; int landmark_count = 0; std::list index_list; //****************** Kd Tree W STraits traits(&(W[0])); Tree treeW(boost::counting_iterator(0), boost::counting_iterator(nbP), typename Tree::Splitter(), traits); // shuffle the list of indexes (via a vector) { std::vector temp_vector; for (int i = 0; i < nbP; ++i) temp_vector.push_back(i); unsigned seed = std::chrono::system_clock::now().time_since_epoch().count(); std::shuffle(temp_vector.begin(), temp_vector.end(), std::default_random_engine(seed)); //CGAL::spatial_sort(temp_vector.begin(), temp_vector.end()); for (std::vector::iterator it = temp_vector.begin(); it != temp_vector.end(); ++it) index_list.push_front(*it); } //******************** Initialize point set if (!torus) for (unsigned pos1 = 0; pos1 < D+1; ++pos1) { std::vector point; for (unsigned i = 0; i < pos1; ++i) point.push_back(-1); if (pos1 != D) point.push_back(1); for (unsigned i = pos1+1; i < D; ++i) point.push_back(0); assert(point.size() == D); W[index_list.front()] = Point_d(point); insert_delaunay_landmark_with_copies(W, index_list.front(), landmarks_ind, t, landmark_count, torus); index_list.pop_front(); } else initialize_torus(W, treeW, t, epsilon, landmarks_ind, landmark_count); //std::cout << "Size of treeW: " << treeW.size() << "\n"; //std::cout << "Size of t: " << t.number_of_vertices() << "\n"; //******************* Initialize heap for R_max //Heap R_max_heap; //make_heap(t, R_max_heap); R_max_handle rh = sampling_radius(t); FT epsilon0 = rh.value; if (experiment1) eps_vector.push_back(pow(1/rh.value,D)); //******************** Iterative algorithm std::vector candidate_points; torus_search(treeW, D, rh.center, alpha*rh.value, candidate_points); std::list::iterator list_it; std::vector::iterator cp_it = candidate_points.begin(); while (cp_it != candidate_points.end()) { if (!is_violating_protection(W[*cp_it], t, D, delta, power_protection, theta0)) { insert_delaunay_landmark_with_copies(W, *cp_it, landmarks_ind, t, landmark_count, torus); //make_heap(t, R_max_heap); rh = sampling_radius(t); if (experiment1) eps_vector.push_back(pow(1/rh.value,D)); //std::cout << "rhvalue = " << rh.value << "\n"; //std::cout << "D = " << candidate_points.clear(); torus_search(treeW, D, rh.center, alpha*rh.value, candidate_points); /* // PIECE OF CODE FOR DEBUGGING PURPOSES Delaunay_vertex inserted_v = insert_delaunay_landmark_with_copies(W, *list_it, landmarks_ind, t, landmark_count); if (triangulation_is_protected(t, delta)) { index_list.erase(list_it); list_it = index_list.begin(); } else { //THAT'S WHERE SOMETHING'S WRONG t.remove(inserted_v); landmarks_ind.pop_back(); landmark_count--; write_delaunay_mesh(t, W[*list_it], is2d); is_violating_protection(W[*list_it], t_old, D, delta); //Called for encore } */ //std::cout << "index_list_size() = " << index_list.size() << "\n"; } else { cp_it++; //std::cout << "!!!!!WARNING!!!!! A POINT HAS BEEN OMITTED!!!\n"; } //if (list_it != index_list.end()) // write_delaunay_mesh(t, W[*list_it], is2d); } if (experiment2) epsratio_vector.push_back(rh.value/epsilon0); std::cout << "The iteration ended when cp_count = " << candidate_points.size() << "\n"; std::cout << "alphaRmax = " << alpha*rh.value << "\n"; std::cout << "epsilon' = " << rh.value << "\n"; std::cout << "nbL = " << landmarks_ind.size() << "\n"; //fill_landmarks(W, landmarks, landmarks_ind, torus); //fill_full_cell_vector(t, full_cells); /* if (triangulation_is_protected(t, delta)) std::cout << "Triangulation is ok\n"; else { std::cout << "Triangulation is BAD!! T_T しくしく!\n"; } */ //write_delaunay_mesh(t, W[0], is2d); //std::cout << t << std::endl; } /////////////////////////////////////////////////////////////////////////////////////////////////////////// // Series of experiments /////////////////////////////////////////////////////////////////////////////////////////////////////////// void start_experiments(Point_Vector& W, FT theta0, std::vector& landmarks_ind, FT epsilon) { // Experiment 1 experiment1 = true; protected_delaunay(W, landmarks_ind, 0.1*epsilon, epsilon, 0.5, 0, true, true); write_tikz_plot(eps_vector,"epstime.tikz"); experiment1 = false; // Experiment 2 // experiment2 = true; // for (FT delta = 0; delta < epsilon; delta += 0.1*epsilon) // protected_delaunay(W, landmarks_ind, delta, epsilon, 0.5, 0, true, true); // write_tikz_plot(epsratio_vector,"epsratio_delta.tikz"); // experiment2 = false; } #endif