/* This file is part of the Gudhi Library. The Gudhi library * (Geometric Understanding in Higher Dimensions) is a generic C++ * library for computational topology. * * Author(s): Siargey Kachanovich * * Copyright (C) 2015 INRIA Sophia Antipolis-Méditerranée (France) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include //#include "gudhi/graph_simplicial_complex.h" #include "gudhi/Witness_complex.h" #include "gudhi/reader_utils.h" #include "Torus_distance.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace Gudhi; //using namespace boost::filesystem; typedef CGAL::Epick_d K; typedef K::Point_d Point_d; //typedef CGAL::Cartesian_d K; //typedef CGAL::Point_d Point_d; typedef K::FT FT; typedef CGAL::Search_traits< FT, Point_d, typename K::Cartesian_const_iterator_d, typename K::Construct_cartesian_const_iterator_d> Traits_base; typedef CGAL::Euclidean_distance Euclidean_distance; typedef std::vector< Vertex_handle > typeVectorVertex; //typedef std::pair typeSimplex; //typedef std::pair< Simplex_tree<>::Simplex_handle, bool > typePairSimplexBool; typedef CGAL::Search_traits_adapter< std::ptrdiff_t, Point_d*, Traits_base> STraits; //typedef K TreeTraits; //typedef CGAL::Distance_adapter Euclidean_adapter; //typedef CGAL::Kd_tree Kd_tree; typedef CGAL::Orthogonal_k_neighbor_search> K_neighbor_search; typedef K_neighbor_search::Tree Tree; typedef K_neighbor_search::Distance Distance; typedef K_neighbor_search::iterator KNS_iterator; typedef K_neighbor_search::iterator KNS_range; typedef boost::container::flat_map Point_etiquette_map; typedef CGAL::Kd_tree Tree2; typedef CGAL::Fuzzy_sphere Fuzzy_sphere; typedef std::vector Point_Vector; //typedef K::Equal_d Equal_d; //typedef CGAL::Random_points_in_cube_d > > Random_cube_iterator; typedef CGAL::Random_points_in_cube_d Random_cube_iterator; typedef CGAL::Random_points_in_ball_d Random_point_iterator; typedef CGAL::Delaunay_triangulation Delaunay_triangulation; typedef Delaunay_triangulation::Facet Facet; typedef CGAL::Sphere_d Sphere_d; bool toric=false; /** * \brief Customized version of read_points * which takes into account a possible nbP first line * */ inline void read_points_cust ( std::string file_name , Point_Vector & points) { std::ifstream in_file (file_name.c_str(),std::ios::in); if(!in_file.is_open()) { std::cerr << "Unable to open file " << file_name << std::endl; return; } std::string line; double x; while( getline ( in_file , line ) ) { std::vector< double > point; std::istringstream iss( line ); while(iss >> x) { point.push_back(x); } Point_d p(point.begin(), point.end()); if (point.size() != 1) points.push_back(p); } in_file.close(); } void generate_points_random_box(Point_Vector& W, int nbP, int dim) { /* Random_cube_iterator rp(dim, 1); for (int i = 0; i < nbP; i++) { std::vector point; for (auto it = rp->cartesian_begin(); it != rp->cartesian_end(); ++it) point.push_back(*it); W.push_back(Point_d(point)); rp++; } */ Random_cube_iterator rp(dim, 1.0); for (int i = 0; i < nbP; i++) { W.push_back(*rp++); } } void write_wl( std::string file_name, std::vector< std::vector > & WL) { std::ofstream ofs (file_name, std::ofstream::out); for (auto w : WL) { for (auto l: w) ofs << l << " "; ofs << "\n"; } ofs.close(); } void write_points( std::string file_name, std::vector< Point_d > & points) { std::ofstream ofs (file_name, std::ofstream::out); for (auto w : points) { for (auto it = w.cartesian_begin(); it != w.cartesian_end(); ++it) ofs << *it << " "; ofs << "\n"; } ofs.close(); } void write_edges(std::string file_name, Witness_complex<>& witness_complex, Point_Vector& landmarks) { std::ofstream ofs (file_name, std::ofstream::out); for (auto u: witness_complex.complex_vertex_range()) for (auto v: witness_complex.complex_vertex_range()) { typeVectorVertex edge = {u,v}; if (u < v && witness_complex.find(edge) != witness_complex.null_simplex()) { for (auto it = landmarks[u].cartesian_begin(); it != landmarks[u].cartesian_end(); ++it) ofs << *it << " "; ofs << "\n"; for (auto it = landmarks[v].cartesian_begin(); it != landmarks[v].cartesian_end(); ++it) ofs << *it << " "; ofs << "\n\n\n"; } } ofs.close(); } /** Function that chooses landmarks from W and place it in the kd-tree L. * Note: nbL hould be removed if the code moves to Witness_complex */ void landmark_choice(Point_Vector &W, int nbP, int nbL, Point_Vector& landmarks, std::vector& landmarks_ind) { std::cout << "Enter landmark choice to kd tree\n"; int chosen_landmark; Point_d* p; CGAL::Random rand; for (int i = 0; i < nbL; i++) { // while (!res.second) // { do chosen_landmark = rand.get_int(0,nbP); while (std::count(landmarks_ind.begin(),landmarks_ind.end(),chosen_landmark)!=0); //rand++; //std::cout << "Chose " << chosen_landmark << std::endl; p = &W[chosen_landmark]; //L_i.emplace(chosen_landmark,i); // } landmarks.push_back(*p); landmarks_ind.push_back(chosen_landmark); //std::cout << "Added landmark " << chosen_landmark << std::endl; } } void aux_fill_grid(Point_Vector& W, int& width, Point_Vector& landmarks, std::vector& landmarks_ind, std::vector & curr_pattern) { int D = W[0].size(); int nb_points = 1; for (int i = 0; i < D; ++i) nb_points *= width; for (int i = 0; i < nb_points; ++i) { std::vector point; int cell_i = i; for (int l = 0; l < D; ++l) { if (curr_pattern[l]) point.push_back(-1.0+(2.0/width)*(cell_i%width)+(1.0/width)); else point.push_back(-1.0+(2.0/width)*(cell_i%width)); cell_i /= width; } landmarks.push_back(Point_d(point)); landmarks_ind.push_back(0);//landmarks_ind.push_back(W.size()); //std::cout << "Added point " << W.size() << std::endl;; //W.push_back(Point_d(point)); } } void aux_put_halves(Point_Vector& W, int& width, Point_Vector& landmarks, std::vector& landmarks_ind, std::vector& curr_pattern, std::vector::iterator curr_pattern_it, std::vector::iterator bool_it, std::vector::iterator bool_end) { if (curr_pattern_it != curr_pattern.end()) { if (bool_it != bool_end) { *curr_pattern_it = false; aux_put_halves(W, width, landmarks, landmarks_ind, curr_pattern, curr_pattern_it+1, bool_it, bool_end); *curr_pattern_it = true; aux_put_halves(W, width, landmarks, landmarks_ind, curr_pattern, curr_pattern_it+1, bool_it+1, bool_end); } } else if (*bool_it) { std::cout << "Filling the pattern "; for (bool b: curr_pattern) if (b) std::cout << '1'; else std::cout << '0'; std::cout << "\n"; aux_fill_grid(W, width, landmarks, landmarks_ind, curr_pattern); } } void landmark_choice_cs(Point_Vector& W, int width, Point_Vector& landmarks, std::vector& landmarks_ind, std::vector& face_centers) { std::cout << "Enter landmark choice to kd tree\n"; //int chosen_landmark; CGAL::Random rand; //To speed things up check the last true in the code and put it as the finishing condition unsigned last_true = face_centers.size()-1; while (!face_centers[last_true] && last_true != 0) last_true--; //Recursive procedure to understand where we put +1/2 in centers' coordinates std::vector curr_pattern(W[0].size(), false); aux_put_halves(W, width, landmarks, landmarks_ind, curr_pattern, curr_pattern.begin(), face_centers.begin(), face_centers.begin()+(last_true+1)); std::cout << "The number of landmarks is: " << landmarks.size() << std::endl; } int landmark_perturbation(Point_Vector &W, Point_Vector& landmarks, std::vector& landmarks_ind) { //******************** Preface: origin point int D = W[0].size(); std::vector orig_vector; for (int i=0; i landmarks_ext; int nb_cells = 1; for (int i = 0; i < D; ++i) nb_cells *= 3; for (int i = 0; i < nb_cells; ++i) for (int k = 0; k < nbL; ++k) { std::vector point; int cell_i = i; for (int l = 0; l < D; ++l) { point.push_back(landmarks[k][l] + 2.0*((cell_i%3)-1.0)); cell_i /= 3; } landmarks_ext.push_back(point); } write_points("landmarks/initial_landmarks",landmarks_ext); STraits traits(&(landmarks_ext[0])); std::vector< std::vector > WL(nbP); //********************** Neighbor search in a Kd tree Tree L(boost::counting_iterator(0), boost::counting_iterator(nb_cells*nbL), typename Tree::Splitter(), traits); std::cout << "Enter (D+1) nearest landmarks\n"; for (int i = 0; i < nbP; i++) { Point_d& w = W[i]; ////Search D+1 nearest neighbours from the tree of landmarks L K_neighbor_search search(L, w, D+1, FT(0), true, CGAL::Distance_adapter(&(landmarks_ext[0])) ); for(K_neighbor_search::iterator it = search.begin(); it != search.end(); ++it) { if (std::find(WL[i].begin(), WL[i].end(), (it->first)%nbL) == WL[i].end()) WL[i].push_back((it->first)%nbL); } if (i == landmarks_ind[WL[i][0]]) { FT dist = ed.transformed_distance(W[i], landmarks[WL[i][1]]); if (dist < lambda) lambda = dist; } } std::string out_file = "wl_result"; write_wl(out_file,WL); //******************** Constructng a witness complex std::cout << "Entered witness complex construction\n"; Witness_complex<> witnessComplex; witnessComplex.setNbL(nbL); witnessComplex.witness_complex(WL); //******************** Making a set of bad link landmarks std::cout << "Entered bad links\n"; std::set< int > perturbL; int count_badlinks = 0; //std::cout << "Bad links around "; std::vector< int > count_bad(D); std::vector< int > count_good(D); for (auto u: witnessComplex.complex_vertex_range()) { if (!witnessComplex.has_good_link(u, count_bad, count_good, D)) { count_badlinks++; Point_d& l = landmarks[u]; Fuzzy_sphere fs(l, sqrt(lambda)*3, 0, traits); std::vector curr_perturb; L.search(std::insert_iterator>(curr_perturb,curr_perturb.begin()),fs); for (int i: curr_perturb) perturbL.insert(i%nbL); } } for (unsigned int i = 0; i != count_good.size(); i++) if (count_good[i] != 0) std::cout << "count_good[" << i << "] = " << count_good[i] << std::endl; for (unsigned int i = 0; i != count_bad.size(); i++) if (count_bad[i] != 0) std::cout << "count_bad[" << i << "] = " << count_bad[i] << std::endl; std::cout << "\nBad links total: " << count_badlinks << " Points to perturb: " << perturbL.size() << std::endl; //*********************** Perturb bad link landmarks for (auto u: perturbL) { Random_point_iterator rp(D,sqrt(lambda)/8); std::vector point; for (int i = 0; i < D; i++) { while (K().squared_distance_d_object()(*rp,origin) < lambda/256) rp++; FT coord = landmarks[u][i] + (*rp)[i]; if (coord > 1) point.push_back(coord-1); else if (coord < -1) point.push_back(coord+1); else point.push_back(coord); } landmarks[u] = Point_d(point); } std::cout << "lambda=" << lambda << std::endl; char buffer[100]; int i = sprintf(buffer,"stree_result.txt"); if (i >= 0) { std::string out_file = (std::string)buffer; std::ofstream ofs (out_file, std::ofstream::out); witnessComplex.st_to_file(ofs); ofs.close(); } write_edges("landmarks/edges", witnessComplex, landmarks); return count_badlinks; } void exaustive_search(Point_Vector& W, int width) { int D = W[0].size()+1; int nb_points = pow(2,D); std::vector face_centers(D, false); int bl = 0; //Bad links std::vector> good_patterns; for (int i = 0; i < nb_points; ++i) { int cell_i = i; for (int l = 0; l < D; ++l) { if (cell_i%2 == 0) face_centers[l] = false; else face_centers[l] = true; cell_i /= 2; } std::cout << "**Current pattern "; for (bool b: face_centers) if (b) std::cout << '1'; else std::cout << '0'; std::cout << "\n"; Point_Vector landmarks; std::vector landmarks_ind; Point_Vector W_copy(W); landmark_choice_cs(W_copy, width, landmarks, landmarks_ind, face_centers); if (landmarks.size() != 0) { bl = landmark_perturbation(W_copy, landmarks, landmarks_ind); if ((1.0*bl)/landmarks.size() < 0.5) good_patterns.push_back(face_centers); } } std::cout << "The following patterns worked: "; for (std::vector pattern : good_patterns) { std::cout << "["; for (bool b: pattern) if (b) std::cout << '1'; else std::cout << '0'; std::cout << "] "; } std::cout << "\n"; } int main (int argc, char * const argv[]) { unsigned nbP = atoi(argv[1]); unsigned width = atoi(argv[2]); unsigned dim = atoi(argv[3]); std::string code = (std::string) argv[4]; bool e_option = false; int c; if (argc != 5) { std::cerr << "Usage: " << argv[0] << "witness_complex_cubic_systems nbP width dim code || witness_complex_systems -e nbP width dim\n" << "where nbP stands for the number of witnesses, width for the width of the grid, dim for dimension " << "and code is a sequence of (dim+1) symbols 0 and 1 representing if we take the centers of k-dimensional faces of the cubic system depending if it is 0 or 1." << "-e stands for the 'exaustive' option"; return 0; } while ((c = getopt (argc, argv, "e::")) != -1) switch(c) { case 'e' : e_option = true; nbP = atoi(argv[2]); width = atoi(argv[3]); dim = atoi(argv[4]); break; default : nbP = atoi(argv[1]); width = atoi(argv[2]); dim = atoi(argv[3]); code = (std::string) argv[4]; } Point_Vector point_vector; generate_points_random_box(point_vector, nbP, dim); // Exaustive search if (e_option) { std::cout << "Start exaustive search!\n"; exaustive_search(point_vector, width); return 0; } // Search with a specific cubic system std::vector face_centers; if (code.size() != dim+1) { std::cerr << "The code should contain (dim+1) symbols"; return 1; } for (char c: code) if (c == '0') face_centers.push_back(false); else face_centers.push_back(true); std::cout << "Let the carnage begin!\n"; Point_Vector L; std::vector chosen_landmarks; landmark_choice_cs(point_vector, width, L, chosen_landmarks, face_centers); int nbL = width; //!!!!!!!!!!!!! int bl = nbL, curr_min = bl; write_points("landmarks/initial_pointset",point_vector); //write_points("landmarks/initial_landmarks",L); //for (int i = 0; i < 1; i++) for (int i = 0; bl > 0; i++) { std::cout << "========== Start iteration " << i << "== curr_min(" << curr_min << ")========\n"; bl=landmark_perturbation(point_vector, L, chosen_landmarks); if (bl < curr_min) curr_min=bl; write_points("landmarks/landmarks0",L); } }