/* This file is part of the Gudhi Library. The Gudhi library * (Geometric Understanding in Higher Dimensions) is a generic C++ * library for computational topology. * * Author(s): Vincent Rouvreau * * Copyright (C) 2016 INRIA * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #ifndef ALPHA_COMPLEX_INTERFACE_H #define ALPHA_COMPLEX_INTERFACE_H #include #include #include #include "Persistent_cohomology_interface.h" #include #include // std::pair #include namespace Gudhi { namespace alpha_complex { class Alpha_complex_interface { using Dynamic_kernel = CGAL::Epick_d< CGAL::Dynamic_dimension_tag >; using Point_d = Dynamic_kernel::Point_d; typedef typename Simplex_tree<>::Simplex_handle Simplex_handle; typedef typename std::pair Insertion_result; using Simplex = std::vector; using Filtered_complex = std::pair; using Complex_tree = std::vector; typedef typename Simplex_tree<>::Simplex_key Simplex_key; public: Alpha_complex_interface(std::vector>&points, double max_alpha_square) : pcoh_(nullptr) { alpha_complex_ = new Alpha_complex(points); alpha_complex_->create_complex(simplex_tree_, max_alpha_square); simplex_tree_.initialize_filtration(); } Alpha_complex_interface(std::string off_file_name, double max_alpha_square, bool from_file = true) : pcoh_(nullptr) { alpha_complex_ = new Alpha_complex(off_file_name); alpha_complex_->create_complex(simplex_tree_, max_alpha_square); simplex_tree_.initialize_filtration(); } bool find_simplex(const Simplex& vh) { return (simplex_tree_.find(vh) != simplex_tree_.null_simplex()); } bool insert_simplex_and_subfaces(const Simplex& complex, Filtration_value filtration = 0) { Insertion_result result = simplex_tree_.insert_simplex_and_subfaces(complex, filtration); return (result.second); } Filtration_value simplex_filtration(const Simplex& complex) { return simplex_tree_.filtration(simplex_tree_.find(complex)); } void remove_maximal_simplex(const Simplex& complex) { return simplex_tree_.remove_maximal_simplex(simplex_tree_.find(complex)); } Complex_tree get_filtered_tree() { Complex_tree filtered_tree; for (auto f_simplex : simplex_tree_.filtration_simplex_range()) { Simplex simplex; for (auto vertex : simplex_tree_.simplex_vertex_range(f_simplex)) { simplex.insert(simplex.begin(), vertex); } filtered_tree.push_back(std::make_pair(simplex, simplex_tree_.filtration(f_simplex))); } return filtered_tree; } Complex_tree get_skeleton_tree(int dimension) { Complex_tree skeleton_tree; for (auto f_simplex : simplex_tree_.skeleton_simplex_range(dimension)) { Simplex simplex; for (auto vertex : simplex_tree_.simplex_vertex_range(f_simplex)) { simplex.insert(simplex.begin(), vertex); } skeleton_tree.push_back(std::make_pair(simplex, simplex_tree_.filtration(f_simplex))); } return skeleton_tree; } Complex_tree get_star_tree(const Simplex& complex) { Complex_tree star_tree; for (auto f_simplex : simplex_tree_.star_simplex_range(simplex_tree_.find(complex))) { Simplex simplex; for (auto vertex : simplex_tree_.simplex_vertex_range(f_simplex)) { simplex.insert(simplex.begin(), vertex); } star_tree.push_back(std::make_pair(simplex, simplex_tree_.filtration(f_simplex))); } return star_tree; } Complex_tree get_coface_tree(const Simplex& complex, int dimension) { Complex_tree coface_tree; for (auto f_simplex : simplex_tree_.cofaces_simplex_range(simplex_tree_.find(complex), dimension)) { Simplex simplex; for (auto vertex : simplex_tree_.simplex_vertex_range(f_simplex)) { simplex.insert(simplex.begin(), vertex); } coface_tree.push_back(std::make_pair(simplex, simplex_tree_.filtration(f_simplex))); } return coface_tree; } // Specific to Witness complex because no inheritance Filtration_value filtration() const { return simplex_tree_.filtration(); } void set_filtration(Filtration_value fil) { simplex_tree_.set_filtration(fil); } void initialize_filtration() { simplex_tree_.initialize_filtration(); } size_t num_vertices() const { return simplex_tree_.num_vertices(); } size_t num_simplices() { return simplex_tree_.num_simplices(); } int dimension() const { return simplex_tree_.dimension(); } void set_dimension(int dimension) { simplex_tree_.set_dimension(dimension); } std::vector get_point(int vh) { std::vector vd; try { Point_d ph = alpha_complex_->get_point(vh); for (auto coord = ph.cartesian_begin(); coord < ph.cartesian_end(); coord++) vd.push_back(*coord); } catch (std::out_of_range outofrange) { // std::out_of_range is thrown in case not found. Other exceptions must be re-thrown } return vd; } std::vector>> get_persistence(int homology_coeff_field, double min_persistence) { if (pcoh_ != nullptr) { delete pcoh_; } pcoh_ = new Persistent_cohomology_interface>(&simplex_tree_); return pcoh_->get_persistence(homology_coeff_field, min_persistence); } std::vector get_betti_numbers() const { if (pcoh_ != nullptr) { return pcoh_->betti_numbers(); } std::vector betti_numbers; return betti_numbers; } std::vector get_persistent_betti_numbers(Filtration_value from, Filtration_value to) const { if (pcoh_ != nullptr) { return pcoh_->persistent_betti_numbers(from, to); } std::vector persistent_betti_numbers; return persistent_betti_numbers; } private: Simplex_tree<> simplex_tree_; Persistent_cohomology_interface>* pcoh_; Alpha_complex* alpha_complex_; }; } // namespace alpha_complex } // namespace Gudhi #endif // ALPHA_COMPLEX_INTERFACE_H