summaryrefslogtreecommitdiff
path: root/src/Alpha_complex/include/gudhi/Alpha_complex.h
blob: 191ff8536230c82aeb95c67a113a0bb82295f72d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
/*    This file is part of the Gudhi Library. The Gudhi library
 *    (Geometric Understanding in Higher Dimensions) is a generic C++
 *    library for computational topology.
 *
 *    Author(s):       Vincent Rouvreau
 *
 *    Copyright (C) 2015  INRIA Saclay (France)
 *
 *    This program is free software: you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation, either version 3 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#ifndef SRC_ALPHA_SHAPES_INCLUDE_GUDHI_ALPHA_SHAPES_H_
#define SRC_ALPHA_SHAPES_INCLUDE_GUDHI_ALPHA_SHAPES_H_

// to construct a simplex_tree from Delaunay_triangulation
#include <gudhi/graph_simplicial_complex.h>
#include <gudhi/Simplex_tree.h>

#include <stdio.h>
#include <stdlib.h>
#include <math.h>  // isnan, fmax

#include <boost/bimap.hpp>

#include <CGAL/Delaunay_triangulation.h>
#include <CGAL/Epick_d.h>
#include <CGAL/algorithm.h>
#include <CGAL/assertions.h>
#include <CGAL/enum.h>

#include <iostream>
#include <iterator>
#include <vector>
#include <string>
#include <limits> // NaN

namespace Gudhi {

namespace alphacomplex {

#define Kinit(f) =k.f()

/** \tableofcontents
 *  \defgroup alpha_complex Alpha complex
 * 
 * \author    Vincent Rouvreau
 * 
 * @{
 * 
 * \section definition Definition
 * 
 * Alpha_complex is a Simplex_tree constructed from each finite cell of a Delaunay Triangulation.
 * 
 * The filtration value of each simplex is computed from the alpha value of the simplex if it is Gabriel or
 * from the alpha value of the simplex coface that makes the simplex not Gabriel.
 * 
 * Please refer to \cite AlphaShapesDefinition for a more complete alpha complex definition.
 * 
 * Alpha complex are interesting because it looks like an \ref alpha-shape "Alpha shape" as described in
 * \cite AlphaShapesIntroduction (an alpha complex concept vulgarization).
 * 
 * \section example Example
 * 
 * This example loads points from an OFF file, builds the Delaunay triangulation from the points, and finally
 * initialize the alpha complex with it.
 * 
 * Then, it is asked to display information about the alpha complex.
 * 
 * \include Alpha_complex_from_off.cpp
 * 
 * When launching:
 * 
 * \code $> ./alphaoffreader ../../data/points/alphacomplexdoc.off
 * \endcode
 *
 * the program output is:
 * 
 * \include alphaoffreader_for_doc.txt
 * 
 * \section algorithm Algorithm
 * 
 * <b>Data structure</b>
 * 
 * In order to build the alpha complex, first, a Simplex tree is build from the cells of a Delaunay Triangulation.
 * (The filtration value is set to NaN, which stands for unknown value):
 * \image html "alpha_complex_doc.png" "Simplex tree structure construction example"
 *
 * <b>Filtration value computation algorithm</b>
 *
 * \f{algorithm}{ 
 * \caption{Filtration value computation algorithm}\label{alpha}
 * \begin{algorithmic}
 * \For{i : dimension $\rightarrow$ 1}
 *   \ForAll{$\sigma$ of dimension i}
 *     \If {filtration($\sigma$) is NaN}
 *       \State filtration($\sigma$) = $\alpha(\sigma)$
 *     \EndIf
 *     \ForAll{$\tau$ face of $\sigma$} \Comment{propagate alpha filtration value}
 *       \If {filtration($\tau$) is not NaN} 
 *         \State filtration($\tau$) = min (filtration($\tau$), filtration($\sigma$))
 *       \Else
 *         \If {$\tau$ is not Gabriel for $\sigma$} 
 *           \State filtration($\tau$) = filtration($\sigma$)
 *         \EndIf
 *       \EndIf
 *     \EndFor
 *   \EndFor
 * \EndFor
 * \end{algorithmic}
 * \f}
 * 
 * From the example above, it means the algorithm will look into each triangulation ([1,2,3], [2,3,4], [1,3,5], ...),
 * will compute the filtration value of the triangulation, and then will propagate the filtration value as described
 * here :
 * \image html "alpha_complex_doc_135.png" "Filtration value propagation example"
 * Then, the algorithm will look into each edge ([1,2], [2,3], [1,3], ...),
 * will compute the filtration value of the edge (in this case, propagation will have no effect).
 * 
 * Finally, the algorithm will look into each vertex ([1], [2], [3], [4], [5], [6] and [7]),
 * will set the filtration value (0 in case of a vertex - propagation will have no effect).
 * 
 * \section alpha-shape Alpha shape
 * 
 * In the example above, the alpha shape of \f$\alpha_{74} < \alpha < \alpha_{73}\f$ is the alpha complex where the 
 * \f$\alpha_{74} <\f$ filtration value \f$< \alpha_{73}\f$ as described in \cite AlphaShapesIntroduction
 * 
 * \image html "alpha_complex_doc_alpha_shape.png" "Alpha shape example"
 * \copyright GNU General Public License v3.                         
 * \verbatim  Contact: gudhi-users@lists.gforge.inria.fr \endverbatim
 */
/** @} */  // end defgroup alpha_complex

/**
 * \brief Alpha complex data structure.
 *
 * \details
 * The data structure can be constructed from a CGAL Delaunay triangulation (for more informations on CGAL Delaunay 
 * triangulation, please refer to the corresponding chapter in page http://doc.cgal.org/latest/Triangulation/) or from
 * an OFF file (cf. Delaunay_triangulation_off_reader).
 * 
 * Please refer to \ref alpha_complex for examples.
 *
 */
template<typename IndexingTag = linear_indexing_tag,
typename FiltrationValue = double,
typename SimplexKey = int,  // must be a signed integer type
typename VertexHandle = int  // must be a signed integer type, int convertible to it
>
class Alpha_complex : public Simplex_tree<> {
 private:
  // From Simplex_tree
  // Type required to insert into a simplex_tree (with or without subfaces).
  typedef std::vector<Vertex_handle> Vector_vertex;

  // Simplex_result is the type returned from simplex_tree insert function.
  typedef typename std::pair<Simplex_handle, bool> Simplex_result;

  // From CGAL
  // Kernel for the Delaunay_triangulation. Dimension can be set dynamically.
  typedef CGAL::Epick_d< CGAL::Dynamic_dimension_tag > Kernel;

  // Delaunay_triangulation type required to create an alpha-complex.
  typedef CGAL::Delaunay_triangulation<Kernel> Delaunay_triangulation;

  typedef typename Kernel::Compute_squared_radius_d Squared_Radius;
  typedef typename Kernel::Side_of_bounded_sphere_d Is_Gabriel;

  // Type required to compute squared radius, or side of bounded sphere on a vector of points.
  typedef std::vector<Kernel::Point_d> Vector_of_CGAL_points;

  // Vertex_iterator type from CGAL.
  typedef Delaunay_triangulation::Vertex_iterator CGAL_vertex_iterator;

  // Boost bimap type to switch from CGAL vertex iterator to simplex tree vertex handle and vice versa.
  typedef boost::bimap< CGAL_vertex_iterator, Vertex_handle > Bimap_vertex;

 private:
  /** \brief Boost bimap to switch from CGAL vertex iterator to simplex tree vertex handle and vice versa.*/
  Bimap_vertex cgal_simplextree;
  /** \brief Pointer on the CGAL Delaunay triangulation.*/
  Delaunay_triangulation* triangulation;

 public:
  /** \brief Alpha_complex constructor from an OFF file name.
   * Uses the Delaunay_triangulation_off_reader to construct the Delaunay triangulation required to initialize 
   * the Alpha_complex.
   *
   * @param[in] off_file_name OFF file [path and] name.
   */
  Alpha_complex(std::string& off_file_name)
      : triangulation(nullptr) {
    Gudhi::Delaunay_triangulation_off_reader<Delaunay_triangulation> off_reader(off_file_name);
    if (!off_reader.is_valid()) {
      std::cerr << "Alpha_complex - Unable to read file " << off_file_name << std::endl;
      exit(-1); // ----- >>
    }
    triangulation = off_reader.get_complex();
    init();
  }

  /** \brief Alpha_complex constructor from a Delaunay triangulation.
   *
   * @param[in] triangulation_ptr Pointer on a Delaunay triangulation.
   */
  Alpha_complex(Delaunay_triangulation* triangulation_ptr)
      : triangulation(triangulation_ptr) {
    init();
  }

  /** \brief Alpha_complex destructor from a Delaunay triangulation.
   *
   * @warning Deletes the Delaunay triangulation.
   */
  ~Alpha_complex() {
    delete triangulation;
  }

 private:
  /** \brief Initialize the Alpha_complex from the Delaunay triangulation.
   *
   * @warning Delaunay triangulation must be already constructed with at least one vertex and dimension must be more 
   * than 0.
   * 
   * Initialization can be launched once.
   */
  void init() {
    if (triangulation == nullptr) {
      std::cerr << "Alpha_complex init - Cannot init from a NULL triangulation" << std::endl;
      return; // ----- >>
    }
    if (triangulation->number_of_vertices() < 1) {
      std::cerr << "Alpha_complex init - Cannot init from a triangulation without vertices" << std::endl;
      return; // ----- >>
    }
    if (triangulation->maximal_dimension() < 1) {
      std::cerr << "Alpha_complex init - Cannot init from a zero-dimension triangulation" << std::endl;
      return; // ----- >>
    }
    if (num_vertices() > 0) {
      std::cerr << "Alpha_complex init - Cannot init twice" << std::endl;
      return; // ----- >>
    }
    
    set_dimension(triangulation->maximal_dimension());

    // --------------------------------------------------------------------------------------------
    // bimap to retrieve simplex tree vertex handles from CGAL vertex iterator and vice versa
    // Start to insert at handle = 0 - default integer value
    Vertex_handle vertex_handle = Vertex_handle();
    // Loop on triangulation vertices list
    for (CGAL_vertex_iterator vit = triangulation->vertices_begin(); vit != triangulation->vertices_end(); ++vit) {
      cgal_simplextree.insert(Bimap_vertex::value_type(vit, vertex_handle));
      vertex_handle++;
    }
    // --------------------------------------------------------------------------------------------

    // --------------------------------------------------------------------------------------------
    // Simplex_tree construction from loop on triangulation finite full cells list
    for (auto cit = triangulation->finite_full_cells_begin(); cit != triangulation->finite_full_cells_end(); ++cit) {
      Vector_vertex vertexVector;
#ifdef DEBUG_TRACES
      std::cout << "Simplex_tree insertion ";
#endif  // DEBUG_TRACES
      for (auto vit = cit->vertices_begin(); vit != cit->vertices_end(); ++vit) {
#ifdef DEBUG_TRACES
        std::cout << " " << cgal_simplextree.left.at(*vit);
#endif  // DEBUG_TRACES
        // Vector of vertex construction for simplex_tree structure
        vertexVector.push_back(cgal_simplextree.left.at(*vit));
      }
#ifdef DEBUG_TRACES
      std::cout << std::endl;
#endif  // DEBUG_TRACES
      // Insert each simplex and its subfaces in the simplex tree - filtration is NaN
      Simplex_result insert_result = insert_simplex_and_subfaces(vertexVector,
                                                                     std::numeric_limits<double>::quiet_NaN());
      if (!insert_result.second) {
        std::cerr << "Alpha_complex::init insert_simplex_and_subfaces failed" << std::endl;
      }
    }
    // --------------------------------------------------------------------------------------------

    Filtration_value filtration_max = 0.0;
    // --------------------------------------------------------------------------------------------
    // ### For i : d -> 0
    for (int decr_dim = dimension(); decr_dim >= 0; decr_dim--) {
      // ### Foreach Sigma of dim i
      for (auto f_simplex : skeleton_simplex_range(decr_dim)) {
        int f_simplex_dim = dimension(f_simplex);
        if (decr_dim == f_simplex_dim) {
          Vector_of_CGAL_points pointVector;
#ifdef DEBUG_TRACES
          std::cout << "Sigma of dim " << decr_dim << " is";
#endif  // DEBUG_TRACES
          for (auto vertex : simplex_vertex_range(f_simplex)) {
            pointVector.push_back((cgal_simplextree.right.at(vertex))->point());
#ifdef DEBUG_TRACES
            std::cout << " " << vertex;
#endif  // DEBUG_TRACES
          }
#ifdef DEBUG_TRACES
          std::cout << std::endl;
#endif  // DEBUG_TRACES
          // ### If filt(Sigma) is NaN : filt(Sigma) = alpha(Sigma)
          if (isnan(filtration(f_simplex))) {
            Filtration_value alpha_complex_filtration = 0.0;
            // No need to compute squared_radius on a single point - alpha is 0.0
            if (f_simplex_dim > 0) {
              // squared_radius function initialization
              Kernel k;
              Squared_Radius squared_radius Kinit(compute_squared_radius_d_object);

              alpha_complex_filtration = squared_radius(pointVector.begin(), pointVector.end());
            }
            assign_filtration(f_simplex, alpha_complex_filtration);
            filtration_max = fmax(filtration_max, alpha_complex_filtration);
#ifdef DEBUG_TRACES
            std::cout << "filt(Sigma) is NaN : filt(Sigma) =" << filtration(f_simplex) << std::endl;
#endif  // DEBUG_TRACES
          }
          propagate_alpha_filtration(f_simplex, decr_dim);
        }
      }
    }
    // --------------------------------------------------------------------------------------------

#ifdef DEBUG_TRACES
    std::cout << "filtration_max=" << filtration_max << std::endl;
#endif  // DEBUG_TRACES
    set_filtration(filtration_max);
  }

  template<typename Simplex_handle>
  void propagate_alpha_filtration(Simplex_handle f_simplex, int decr_dim) {
    // ### Foreach Tau face of Sigma
    for (auto f_boundary : boundary_simplex_range(f_simplex)) {
#ifdef DEBUG_TRACES
      std::cout << " | --------------------------------------------------" << std::endl;
      std::cout << " | Tau ";
      for (auto vertex : simplex_vertex_range(f_boundary)) {
        std::cout << vertex << " ";
      }
      std::cout << "is a face of Sigma" << std::endl;
      std::cout << " | isnan(filtration(Tau)=" << isnan(filtration(f_boundary)) << std::endl;
#endif  // DEBUG_TRACES
      // ### If filt(Tau) is not NaN
      if (!isnan(filtration(f_boundary))) {
        // ### filt(Tau) = fmin(filt(Tau), filt(Sigma))
        Filtration_value alpha_complex_filtration = fmin(filtration(f_boundary), filtration(f_simplex));
        assign_filtration(f_boundary, alpha_complex_filtration);
        // No need to check for filtration_max, alpha_complex_filtration is a min of an existing filtration value
#ifdef DEBUG_TRACES
        std::cout << " | filt(Tau) = fmin(filt(Tau), filt(Sigma)) = " << filtration(f_boundary) << std::endl;
#endif  // DEBUG_TRACES
        // ### Else
      } else {
        // No need to compute is_gabriel for dimension <= 2
        // i.e. : Sigma = (3,1) => Tau = 1
        if (decr_dim > 1) {
          // insert the Tau points in a vector for is_gabriel function
          Vector_of_CGAL_points pointVector;
          Vertex_handle vertexForGabriel = Vertex_handle();
          for (auto vertex : simplex_vertex_range(f_boundary)) {
            pointVector.push_back((cgal_simplextree.right.at(vertex))->point());
          }
          // Retrieve the Sigma point that is not part of Tau - parameter for is_gabriel function
          for (auto vertex : simplex_vertex_range(f_simplex)) {
            if (std::find(pointVector.begin(), pointVector.end(), (cgal_simplextree.right.at(vertex))->point())
                == pointVector.end()) {
              // vertex is not found in Tau
              vertexForGabriel = vertex;
              // No need to continue loop
              break;
            }
          }
          // is_gabriel function initialization
          Kernel k;
          Is_Gabriel is_gabriel Kinit(side_of_bounded_sphere_d_object);
#ifdef DEBUG_TRACES
          bool is_gab = is_gabriel(pointVector.begin(), pointVector.end(), (cgal_simplextree.right.at(vertexForGabriel))->point())
              != CGAL::ON_BOUNDED_SIDE;
          std::cout << " | Tau is_gabriel(Sigma)=" << is_gab << " - vertexForGabriel=" << vertexForGabriel << std::endl;
#endif  // DEBUG_TRACES
          // ### If Tau is not Gabriel of Sigma
          if ((is_gabriel(pointVector.begin(), pointVector.end(), (cgal_simplextree.right.at(vertexForGabriel))->point())
               == CGAL::ON_BOUNDED_SIDE)) {
            // ### filt(Tau) = filt(Sigma)
            Filtration_value alpha_complex_filtration = filtration(f_simplex);
            assign_filtration(f_boundary, alpha_complex_filtration);
            // No need to check for filtration_max, alpha_complex_filtration is an existing filtration value
#ifdef DEBUG_TRACES
            std::cout << " | filt(Tau) = filt(Sigma) = " << filtration(f_boundary) << std::endl;
#endif  // DEBUG_TRACES
          }
        }
      }
    }
  }
};

} // namespace alphacomplex

} // namespace Gudhi

#endif  // SRC_ALPHA_COMPLEX_INCLUDE_GUDHI_ALPHA_COMPLEX_H_