summaryrefslogtreecommitdiff
path: root/src/Alpha_complex/include/gudhi/Alpha_complex.h
blob: 06e69cf3ff35f0d785e352dad66510bd84221726 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
/*    This file is part of the Gudhi Library. The Gudhi library
 *    (Geometric Understanding in Higher Dimensions) is a generic C++
 *    library for computational topology.
 *
 *    Author(s):       Vincent Rouvreau
 *
 *    Copyright (C) 2015  INRIA Saclay (France)
 *
 *    This program is free software: you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation, either version 3 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#ifndef ALPHA_COMPLEX_H_
#define ALPHA_COMPLEX_H_

// to construct a simplex_tree from Delaunay_triangulation
#include <gudhi/graph_simplicial_complex.h>
#include <gudhi/Simplex_tree.h>

#include <stdio.h>
#include <stdlib.h>
#include <math.h>  // isnan, fmax

#include <CGAL/Delaunay_triangulation.h>
#include <CGAL/Epick_d.h>
#include <CGAL/algorithm.h>
#include <CGAL/assertions.h>
#include <CGAL/enum.h>

#include <iostream>
#include <vector>
#include <string>
#include <limits>  // NaN
#include <map>
#include <utility>  // std::pair

namespace Gudhi {

namespace alphacomplex {

/**
 * \brief Alpha complex data structure.
 *
 * \details
 * The data structure can be constructed from a CGAL Delaunay triangulation (for more informations on CGAL Delaunay 
 * triangulation, please refer to the corresponding chapter in page http://doc.cgal.org/latest/Triangulation/) or from
 * an OFF file (cf. Delaunay_triangulation_off_reader).
 * 
 * Please refer to \ref alpha_complex for examples.
 *
 */
template<class Kernel>
class Alpha_complex : public Simplex_tree<> {
 private:
  // From Simplex_tree
  // Type required to insert into a simplex_tree (with or without subfaces).
  typedef std::vector<Vertex_handle> Vector_vertex;

  // Simplex_result is the type returned from simplex_tree insert function.
  typedef typename std::pair<Simplex_handle, bool> Simplex_result;

  // Delaunay_triangulation type required to create an alpha-complex.
  typedef typename CGAL::Delaunay_triangulation<Kernel> Delaunay_triangulation;

  typedef typename Kernel::Compute_squared_radius_d Squared_Radius;
  typedef typename Kernel::Side_of_bounded_sphere_d Is_Gabriel;

  typedef typename Kernel::Point_d Point_d;

  // Type required to compute squared radius, or side of bounded sphere on a vector of points.
  typedef typename std::vector<Point_d> Vector_of_CGAL_points;

  // Vertex_iterator type from CGAL.
  typedef typename Delaunay_triangulation::Vertex_iterator CGAL_vertex_iterator;

  // size_type type from CGAL.
  typedef typename Delaunay_triangulation::size_type size_type;

  // Double map type to switch from CGAL vertex iterator to simplex tree vertex handle and vice versa.
  typedef typename std::map< CGAL_vertex_iterator, Vertex_handle > Map_vertex_iterator_to_handle;
  typedef typename std::map< Vertex_handle, CGAL_vertex_iterator > Map_vertex_handle_to_iterator;

 private:
  /** \brief Map to switch from CGAL vertex iterator to simplex tree vertex handle.*/
  Map_vertex_iterator_to_handle vertex_iterator_to_handle_;
  /** \brief Map to switch from simplex tree vertex handle to CGAL vertex iterator.*/
  Map_vertex_handle_to_iterator vertex_handle_to_iterator_;
  /** \brief Pointer on the CGAL Delaunay triangulation.*/
  Delaunay_triangulation* triangulation_;
  /** \brief Kernel for triangulation_ functions access.*/
  Kernel kernel_;
  /** \brief Maximum value for alpha square.*/
  Filtration_value max_alpha_square_;

 public:
  /** \brief Alpha_complex constructor from an OFF file name.
   * Uses the Delaunay_triangulation_off_reader to construct the Delaunay triangulation required to initialize 
   * the Alpha_complex.
   *
   * @param[in] off_file_name OFF file [path and] name.
   */
  Alpha_complex(const std::string& off_file_name, Filtration_value max_alpha_square)
      : triangulation_(nullptr),
      max_alpha_square_(max_alpha_square) {
    Gudhi::Delaunay_triangulation_off_reader<Delaunay_triangulation> off_reader(off_file_name);
    if (!off_reader.is_valid()) {
      std::cerr << "Alpha_complex - Unable to read file " << off_file_name << std::endl;
      exit(-1);  // ----- >>
    }
    triangulation_ = off_reader.get_complex();
    init();
  }

  /** \brief Alpha_complex constructor from a Delaunay triangulation.
   *
   * @param[in] triangulation_ptr Pointer on a Delaunay triangulation.
   */
  Alpha_complex(Delaunay_triangulation* triangulation_ptr, Filtration_value max_alpha_square)
      : triangulation_(triangulation_ptr),
      max_alpha_square_(max_alpha_square) {
    init();
  }

  /** \brief Alpha_complex constructor from a list of points.
   * Uses the Delaunay_triangulation_off_reader to construct the Delaunay triangulation required to initialize 
   * the Alpha_complex.
   *
   * @param[in] dimension Dimension of points to be inserted.
   * @param[in] size Number of points to be inserted.
   * @param[in] firstPoint Iterator on the first point to be inserted.
   * @param[in] last Point Iterator on the last point to be inserted.
   */
  template<typename ForwardIterator >
  Alpha_complex(int dimension, size_type size, ForwardIterator firstPoint, ForwardIterator lastPoint,
                Filtration_value max_alpha_square)
      : triangulation_(nullptr),
      max_alpha_square_(max_alpha_square) {
    triangulation_ = new Delaunay_triangulation(dimension);
    size_type inserted = triangulation_->insert(firstPoint, lastPoint);
    if (inserted != size) {
      std::cerr << "Alpha_complex - insertion failed " << inserted << " != " << size << std::endl;
      exit(-1);  // ----- >>
    }
    init();
  }

  /** \brief Alpha_complex destructor from a Delaunay triangulation.
   *
   * @warning Deletes the Delaunay triangulation.
   */
  ~Alpha_complex() {
    delete triangulation_;
  }

  /** \brief get_point returns the point corresponding to the vertex given as parameter.
   *
   * @param[in] vertex Vertex handle of the point to retrieve.
   * @return The founded point.
   */
  Point_d get_point(Vertex_handle vertex) {
    Point_d point;
    try {
      if (vertex_handle_to_iterator_[vertex] != nullptr) {
        point = vertex_handle_to_iterator_[vertex]->point();
      }
    } catch (...) {
      std::cerr << "Alpha_complex - getPoint not found on vertex " << vertex << std::endl;
    }
    return point;
  }

 private:
  /** \brief Initialize the Alpha_complex from the Delaunay triangulation.
   *
   * @warning Delaunay triangulation must be already constructed with at least one vertex and dimension must be more 
   * than 0.
   * 
   * Initialization can be launched once.
   */
  void init() {
    if (triangulation_ == nullptr) {
      std::cerr << "Alpha_complex init - Cannot init from a NULL triangulation" << std::endl;
      return;  // ----- >>
    }
    if (triangulation_->number_of_vertices() < 1) {
      std::cerr << "Alpha_complex init - Cannot init from a triangulation without vertices" << std::endl;
      return;  // ----- >>
    }
    if (triangulation_->maximal_dimension() < 1) {
      std::cerr << "Alpha_complex init - Cannot init from a zero-dimension triangulation" << std::endl;
      return;  // ----- >>
    }
    if (num_vertices() > 0) {
      std::cerr << "Alpha_complex init - Cannot init twice" << std::endl;
      return;  // ----- >>
    }

    set_dimension(triangulation_->maximal_dimension());

    // --------------------------------------------------------------------------------------------
    // double map to retrieve simplex tree vertex handles from CGAL vertex iterator and vice versa
    // Start to insert at handle = 0 - default integer value
    Vertex_handle vertex_handle = Vertex_handle();
    // Loop on triangulation vertices list
    for (CGAL_vertex_iterator vit = triangulation_->vertices_begin(); vit != triangulation_->vertices_end(); ++vit) {
#ifdef DEBUG_TRACES
      std::cout << "Vertex insertion - " << vertex_handle << " -> " << vit->point() << std::endl;
#endif  // DEBUG_TRACES
      vertex_iterator_to_handle_[vit] = vertex_handle;
      vertex_handle_to_iterator_[vertex_handle] = vit;
      vertex_handle++;
    }
    // --------------------------------------------------------------------------------------------

    Filtration_value filtration_max = 0.0;
    // --------------------------------------------------------------------------------------------
    // Simplex_tree construction from loop on triangulation finite full cells list
    for (auto cit = triangulation_->finite_full_cells_begin(); cit != triangulation_->finite_full_cells_end(); ++cit) {
      Vector_vertex vertex_full_cell;
#ifdef DEBUG_TRACES
      std::cout << "Simplex_tree insertion ";
#endif  // DEBUG_TRACES
      for (auto vit = cit->vertices_begin(); vit != cit->vertices_end(); ++vit) {
        if (*vit != nullptr) {
#ifdef DEBUG_TRACES
          std::cout << " " << vertex_iterator_to_handle_[*vit];
#endif  // DEBUG_TRACES
          // Vector of vertex construction for simplex_tree structure
          vertex_full_cell.push_back(vertex_iterator_to_handle_[*vit]);
        }
      }
#ifdef DEBUG_TRACES
      std::cout << std::endl;
#endif  // DEBUG_TRACES

      Simplex_tree<> full_cell;
      full_cell.set_dimension(triangulation_->maximal_dimension());
      // Create a simplex tree containing only one of the full cells
      Simplex_result insert_result = full_cell.insert_simplex_and_subfaces(vertex_full_cell);
      if (!insert_result.second) {
        std::cerr << "Alpha_complex::init insert_simplex_and_subfaces failed" << std::endl;
        exit(-1);  // ----->>
      }
      bool skip_loop = false;
      // +++ For i : d -> 0
      // This loop is skipped in case alpha²(Sigma) > max_alpha_square_
      for (int fc_decr_dim = full_cell.dimension(); (fc_decr_dim >= 0) && (!skip_loop); fc_decr_dim--) {
        // +++ Foreach Sigma of dim i
        // No need to skip this loop in case alpha²(Sigma) > max_alpha_square_ because of
        // if (fc_decr_dim == f_simplex_dim) which means "only for a full cell"
        for (auto fc_simplex : full_cell.skeleton_simplex_range(fc_decr_dim)) {
          int f_simplex_dim = full_cell.dimension(fc_simplex);
          if (fc_decr_dim == f_simplex_dim) {
            Vector_of_CGAL_points pointVector;
            Vector_vertex current_vertex;
#ifdef DEBUG_TRACES
            std::cout << "Sigma of dim " << fc_decr_dim << " is";
#endif  // DEBUG_TRACES
            for (auto vertex : full_cell.simplex_vertex_range(fc_simplex)) {
              pointVector.push_back(get_point(vertex));
              current_vertex.push_back(vertex);
#ifdef DEBUG_TRACES
              std::cout << " " << vertex;
#endif  // DEBUG_TRACES
            }
#ifdef DEBUG_TRACES
            std::cout << std::endl;
#endif  // DEBUG_TRACES
            Simplex_handle sigma_handle = find(current_vertex);
            // +++ If filt(Sigma) is NaN : filt(Sigma) = alpha²(Sigma)
            if ((sigma_handle == null_simplex()) || isnan(filtration(sigma_handle))) {
              Filtration_value alpha_complex_filtration = compute_alpha_square(pointVector.begin(), pointVector.end(),
                                                                               f_simplex_dim);
              if (alpha_complex_filtration <= max_alpha_square_) {
                // Only insert Sigma in Simplex tree if alpha²(Sigma) <= max_alpha_square_
                if (sigma_handle == null_simplex()) {
#ifdef DEBUG_TRACES
                  std::cout << "Alpha_complex::init Sigma not found" << std::endl;
#endif  // DEBUG_TRACES
                  insert_result = insert_simplex(current_vertex, std::numeric_limits<double>::quiet_NaN());
                  if (!insert_result.second) {
                    std::cerr << "Alpha_complex::init insert_simplex failed" << std::endl;
                    exit(-1);  // ----->>
                  }
                  // Sigma is the new inserted simplex handle
                  sigma_handle = insert_result.first;
                }
#ifdef DEBUG_TRACES
                std::cout << "Alpha_complex::init filtration = " << alpha_complex_filtration << std::endl;
#endif  // DEBUG_TRACES
                assign_filtration(sigma_handle, alpha_complex_filtration);
                filtration_max = fmax(filtration_max, alpha_complex_filtration);
              } else {
                // if alpha²(Sigma) > max_alpha_square_ go to the next full cell
                skip_loop = true;
#ifdef DEBUG_TRACES
                std::cout << "Alpha_complex::init skip loop on this full cell" << std::endl;
#endif  // DEBUG_TRACES
                break;
              }
            }  // --- If filt(Sigma) is NaN : filt(Sigma) = alpha(Sigma)
            if (filtration(sigma_handle) <= max_alpha_square_) {
              // Propagate alpha filtration value in Simplex tree if alpha²(Sigma) <= max_alpha_square_
              // in case Sigma is not found AND not inserted (alpha_complex_filtration > max_alpha_square_),
              // filtration(null_simplex()) returns INFINITY => no propagation
              propagate_alpha_filtration(full_cell, fc_simplex, fc_decr_dim, sigma_handle);
            }
          }
        }  // --- Foreach Sigma of dim i
      }  // --- For i : d -> 0
    }
    // --------------------------------------------------------------------------------------------

#ifdef DEBUG_TRACES
    std::cout << "filtration_max=" << filtration_max << std::endl;
#endif  // DEBUG_TRACES
    set_filtration(filtration_max);
  }

  template<typename ForwardIterator >
  Filtration_value compute_alpha_square(ForwardIterator firstPoint, ForwardIterator lastPoint, int f_simplex_dim) {
    Filtration_value alpha_square_value = 0.0;
    // No need to compute squared_radius on a single point - alpha is 0.0
    if (f_simplex_dim > 0) {
      // squared_radius function initialization
      Squared_Radius squared_radius = kernel_.compute_squared_radius_d_object();

      alpha_square_value = squared_radius(firstPoint, lastPoint);
    }
    return alpha_square_value;
  }

  void propagate_alpha_filtration(Simplex_tree& full_cell, Simplex_handle fc_simplex, int fc_decr_dim,
                                  Simplex_handle sigma_handle) {
    // ### Foreach Tau face of Sigma
    for (auto f_boundary : full_cell.boundary_simplex_range(fc_simplex)) {
#ifdef DEBUG_TRACES
      std::cout << " | --------------------------------------------------" << std::endl;
      std::cout << " | Tau ";
#endif  // DEBUG_TRACES
      Vector_vertex tau_vertex;
      for (auto vertex : full_cell.simplex_vertex_range(f_boundary)) {
        tau_vertex.push_back(vertex);
#ifdef DEBUG_TRACES
        std::cout << vertex << " ";
#endif  // DEBUG_TRACES
      }
#ifdef DEBUG_TRACES
      std::cout << "is a face of Sigma" << std::endl;
#endif  // DEBUG_TRACES
      Simplex_handle tau_handle = find(tau_vertex);
      // ### If filt(Tau) is not NaN

      if ((tau_handle != null_simplex()) && (!isnan(filtration(tau_handle)))) {
        // ### filt(Tau) = fmin(filt(Tau), filt(Sigma))
        Filtration_value alpha_complex_filtration = fmin(filtration(tau_handle), filtration(sigma_handle));
        assign_filtration(tau_handle, alpha_complex_filtration);
        // No need to check for filtration_max, alpha_complex_filtration is a min of an existing filtration value
#ifdef DEBUG_TRACES
        std::cout << " | filt(Tau) = fmin(filt(Tau), filt(Sigma)) = " << alpha_complex_filtration << std::endl;
#endif  // DEBUG_TRACES
      } else {
        // No need to compute is_gabriel for dimension <= 2
        // i.e. : Sigma = (3,1) => Tau = 1
        if (fc_decr_dim > 1) {
          // insert the Tau points in a vector for is_gabriel function
          Vector_of_CGAL_points pointVector;
          Vertex_handle vertexForGabriel = Vertex_handle();
          for (auto vertex : full_cell.simplex_vertex_range(f_boundary)) {
            pointVector.push_back(get_point(vertex));
          }
          // Retrieve the Sigma point that is not part of Tau - parameter for is_gabriel function
          for (auto vertex : simplex_vertex_range(sigma_handle)) {
            if (std::find(pointVector.begin(), pointVector.end(), get_point(vertex)) == pointVector.end()) {
              // vertex is not found in Tau
              vertexForGabriel = vertex;
              // No need to continue loop
              break;
            }
          }
          // is_gabriel function initialization
          Is_Gabriel is_gabriel = kernel_.side_of_bounded_sphere_d_object();
          bool is_gab = is_gabriel(pointVector.begin(), pointVector.end(), get_point(vertexForGabriel))
              != CGAL::ON_BOUNDED_SIDE;
#ifdef DEBUG_TRACES
          std::cout << " | Tau is_gabriel(Sigma)=" << is_gab << " - vertexForGabriel=" << vertexForGabriel << std::endl;
#endif  // DEBUG_TRACES
          // ### If Tau is not Gabriel of Sigma
          if (false == is_gab) {
            if (tau_handle == null_simplex()) {
#ifdef DEBUG_TRACES
              std::cout << " | Tau not found" << std::endl;
#endif  // DEBUG_TRACES
              // in case Tau is not yet created
              Simplex_result insert_result = insert_simplex(tau_vertex, std::numeric_limits<double>::quiet_NaN());
              if (!insert_result.second) {
                std::cerr << "Alpha_complex::propagate_alpha_filtration insert_simplex failed" << std::endl;
                exit(-1);  // ----->>
              }
              // Sigma is the new inserted simplex handle
              tau_handle = insert_result.first;
            }
            // ### filt(Tau) = filt(Sigma)
            assign_filtration(tau_handle, filtration(sigma_handle));
            // No need to check for filtration_max, alpha_complex_filtration is an existing filtration value
#ifdef DEBUG_TRACES
            std::cout << " | filt(Tau) = filt(Sigma) = " << filtration(sigma_handle) << std::endl;
#endif  // DEBUG_TRACES
          }
        }
      }
    }
  }
};

}  // namespace alphacomplex

}  // namespace Gudhi

#endif  // ALPHA_COMPLEX_H_