summaryrefslogtreecommitdiff
path: root/src/Alpha_shapes/include/gudhi/Alpha_shapes.h
blob: 2bc8b221e5722541e87deadfd86c04350017af39 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
/*    This file is part of the Gudhi Library. The Gudhi library
 *    (Geometric Understanding in Higher Dimensions) is a generic C++
 *    library for computational topology.
 *
 *    Author(s):       Vincent Rouvreau
 *
 *    Copyright (C) 2015  INRIA Saclay (France)
 *
 *    This program is free software: you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation, either version 3 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#ifndef SRC_ALPHA_SHAPES_INCLUDE_GUDHI_ALPHA_SHAPES_H_
#define SRC_ALPHA_SHAPES_INCLUDE_GUDHI_ALPHA_SHAPES_H_

// to construct a Delaunay_triangulation from a OFF file
#include <gudhi/Alpha_shapes/Delaunay_triangulation_off_io.h>

// to construct a simplex_tree from Delaunay_triangulation
#include <gudhi/graph_simplicial_complex.h>
#include <gudhi/Simplex_tree.h>

#include <stdio.h>
#include <stdlib.h>
#include <math.h>  // isnan, fmax

#include <boost/bimap.hpp>

#include <CGAL/Delaunay_triangulation.h>
#include <CGAL/Epick_d.h>
#include <CGAL/algorithm.h>
#include <CGAL/assertions.h>

#include <iostream>
#include <iterator>
#include <vector>
#include <string>
#include <limits>
#include <map>

namespace Gudhi {

namespace alphashapes {

#define Kinit(f) =k.f()

/** \defgroup alpha_shapes Alpha shapes in dimension N
 *
 <DT>Implementations:</DT>
 Alpha shapes in dimension N are a subset of Delaunay Triangulation in dimension N.


 * \author    Vincent Rouvreau
 * \version   1.0
 * \date      2015
 * \copyright GNU General Public License v3.
 * @{
 */

/**
 * \brief Alpha shapes data structure.
 *
 * \details Every simplex \f$[v_0, \cdots ,v_d]\f$ admits a canonical orientation
 * induced by the order relation on vertices \f$ v_0 < \cdots < v_d \f$.
 *
 * Details may be found in \cite boissonnatmariasimplextreealgorithmica.
 *
 * \implements FilteredComplex
 *
 */
class Alpha_shapes {
 private:
  // From Simplex_tree
  /** \brief Type required to insert into a simplex_tree (with or without subfaces).*/
  typedef std::vector<Vertex_handle> typeVectorVertex;

  typedef typename Gudhi::Simplex_tree<>::Simplex_handle Simplex_handle;

  // From CGAL
  /** \brief Kernel for the Delaunay_triangulation.
   * Dimension can be set dynamically.
   */
  typedef CGAL::Epick_d< CGAL::Dynamic_dimension_tag > Kernel;
  /** \brief Delaunay_triangulation type required to create an alpha-shape.
   */
  typedef CGAL::Delaunay_triangulation<Kernel> Delaunay_triangulation;

  typedef typename Kernel::Compute_squared_radius_d Squared_Radius;
  typedef typename Kernel::Side_of_bounded_sphere_d Is_Gabriel;

  /** \brief Type required to insert into a simplex_tree (with or without subfaces).*/
  typedef std::vector<Kernel::Point_d> typeVectorPoint;

 private:
  /** \brief Upper bound on the simplex tree of the simplicial complex.*/
  Gudhi::Simplex_tree<> st_;

 public:

  Alpha_shapes(std::string& off_file_name) {
    // Construct a default Delaunay_triangulation (dim=0) - dim will be set in visitor reader init function
    Delaunay_triangulation dt(2);
    Gudhi::alphashapes::Delaunay_triangulation_off_reader<Delaunay_triangulation> off_reader(off_file_name, dt);
    if (!off_reader.is_valid()) {
      std::cerr << "Unable to read file " << off_file_name << std::endl;
      exit(-1); // ----- >>
    }
#ifdef DEBUG_TRACES
    std::cout << "number of vertices=" << dt.number_of_vertices() << std::endl;
    std::cout << "number of full cells=" << dt.number_of_full_cells() << std::endl;
    std::cout << "number of finite full cells=" << dt.number_of_finite_full_cells() << std::endl;
#endif  // DEBUG_TRACES
    init<Delaunay_triangulation>(dt);
  }

  template<typename T>
  Alpha_shapes(T& triangulation) {
    init<T>(triangulation);
  }

  ~Alpha_shapes() { }

 private:

  template<typename T>
  void initial_init(T& triangulation) {
    st_.set_dimension(triangulation.maximal_dimension());
    Filtration_value filtration_max = 0.0;

    Kernel k;
    Squared_Radius squared_radius Kinit(compute_squared_radius_d_object);
    Is_Gabriel is_gabriel Kinit(side_of_bounded_sphere_d_object);

    // triangulation full cells list
    for (auto cit = triangulation.full_cells_begin(); cit != triangulation.full_cells_end(); ++cit) {
      typeVectorVertex vertexVector;
      typeVectorPoint pointVector;
      for (auto vit = cit->vertices_begin(); vit != cit->vertices_end(); ++vit) {
        if (!triangulation.is_infinite(*vit)) {
          // Vector of vertex construction for simplex_tree structure
          // Vertex handle is distance - 1
          Vertex_handle vertexHdl = std::distance(triangulation.vertices_begin(), *vit) - 1;
          // infinite cell is -1 for infinite
          vertexVector.push_back(vertexHdl);
          // Vector of points for alpha_shapes filtration value computation
          pointVector.push_back((*vit)->point());
#ifdef DEBUG_TRACES
          /*std::cout << "Point ";
          for (auto Coord = (*vit)->point().cartesian_begin(); Coord != (*vit)->point().cartesian_end(); ++Coord) {
            std::cout << *Coord << " | ";
          }
          std::cout << std::endl;*/
#endif  // DEBUG_TRACES
        }
      }
      Filtration_value alpha_shapes_filtration = 0.0;

      if (!triangulation.is_infinite(cit)) {
        alpha_shapes_filtration = squared_radius(pointVector.begin(), pointVector.end());
#ifdef DEBUG_TRACES
        //std::cout << "Alpha_shape filtration value = " << alpha_shapes_filtration << std::endl;
#endif  // DEBUG_TRACES
      } else {
        Filtration_value tmp_filtration = 0.0;
        bool is_gab = true;
        /*for (auto vit = triangulation.finite_vertices_begin(); vit != triangulation.finite_vertices_end(); ++vit) {
          if (CGAL::ON_UNBOUNDED_SIDE != is_gabriel(pointVector.begin(), pointVector.end(), vit->point())) {
            is_gab = false;
            // TODO(VR) : Compute minimum 
            
          }
        }*/
        if (true == is_gab) {
          alpha_shapes_filtration = squared_radius(pointVector.begin(), pointVector.end());
#ifdef DEBUG_TRACES
          //std::cout << "Alpha_shape filtration value = " << alpha_shapes_filtration << std::endl;
#endif  // DEBUG_TRACES
        }
      }
      // Insert each point in the simplex tree
      st_.insert_simplex_and_subfaces(vertexVector, alpha_shapes_filtration);

#ifdef DEBUG_TRACES
      std::cout << "C" << std::distance(triangulation.full_cells_begin(), cit) << ":";
      for (auto value : vertexVector) {
        std::cout << value << ' ';
      }
      std::cout << " | alpha=" << alpha_shapes_filtration << std::endl;
#endif  // DEBUG_TRACES
    }
    st_.set_filtration(filtration_max);
  }

  template<typename T>
  void init(T& triangulation) {
    st_.set_dimension(triangulation.maximal_dimension());
    Filtration_value filtration_max = 0.0;
    Filtration_value filtration_unknown = std::numeric_limits<double>::quiet_NaN();

    Kernel k;
    Squared_Radius squared_radius Kinit(compute_squared_radius_d_object);
    Is_Gabriel is_gabriel Kinit(side_of_bounded_sphere_d_object);

    // bimap to retrieve vertex handles from points and vice versa
    typedef boost::bimap< Kernel::Point_d, Vertex_handle > bimap_points_vh;
    bimap_points_vh points_to_vh;
    // Start to insert at handle = 0 - default integer value
    Vertex_handle vertex_handle = Vertex_handle();
    // Loop on triangulation vertices list
    for (auto vit = triangulation.vertices_begin(); vit != triangulation.vertices_end(); ++vit) {
      points_to_vh.insert(bimap_points_vh::value_type(vit->point(), vertex_handle));
      vertex_handle++;
    }

    // Loop on triangulation finite full cells list
    for (auto cit = triangulation.finite_full_cells_begin(); cit != triangulation.finite_full_cells_end(); ++cit) {
      typeVectorVertex vertexVector;
      typeVectorPoint pointVector;
      for (auto vit = cit->vertices_begin(); vit != cit->vertices_end(); ++vit) {
#ifdef DEBUG_TRACES
        std::cout << "points_to_vh=" << points_to_vh.left.at((*vit)->point()) << std::endl;
#endif  // DEBUG_TRACES
        // Vector of vertex construction for simplex_tree structure
        vertexVector.push_back(points_to_vh.left.at((*vit)->point()));
        // Vector of points for alpha_shapes filtration value computation
        pointVector.push_back((*vit)->point());
      }
      Filtration_value alpha_shapes_filtration = squared_radius(pointVector.begin(), pointVector.end());
      // Insert each simplex and its subfaces in the simplex tree - filtration is NaN
      std::pair<Simplex_handle, bool> insert_result = st_.insert_simplex_and_subfaces(vertexVector, filtration_unknown);

      if (insert_result.second == true) {
        // Only top-level cell must have the correct alpha value
        st_.assign_filtration(insert_result.first, alpha_shapes_filtration);
#ifdef DEBUG_TRACES
        std::cout << "alpha_shapes_filtration=" << st_.filtration(insert_result.first) << std::endl;
#endif  // DEBUG_TRACES

        filtration_max = fmax(filtration_max, alpha_shapes_filtration);
      }
    }

    // ### For i : d -> 0
    for (int decr_dim = st_.dimension(); decr_dim >= 0; decr_dim--) {
      // ### Foreach Sigma of dim i
      for (auto f_simplex : st_.skeleton_simplex_range(decr_dim)) {
        int f_simplex_dim = st_.dimension(f_simplex);
#ifdef DEBUG_TRACES
        std::cout << "f_simplex_dim= " << f_simplex_dim << " - decr_dim= " << decr_dim << std::endl;
#endif  // DEBUG_TRACES
        if (decr_dim == f_simplex_dim) {
          typeVectorPoint pointVector;
#ifdef DEBUG_TRACES
          std::cout << "vertex ";
#endif  // DEBUG_TRACES
          for (auto vertex : st_.simplex_vertex_range(f_simplex)) {
            pointVector.push_back(points_to_vh.right.at(vertex));
#ifdef DEBUG_TRACES
            std::cout << (int) vertex << " ";
#endif  // DEBUG_TRACES
          }
#ifdef DEBUG_TRACES
          std::cout << std::endl;
#endif  // DEBUG_TRACES
          // ### If filt(Sigma) is NaN : filt(Sigma) = alpha(Sigma)
          if (isnan(st_.filtration(f_simplex))) {
            Filtration_value alpha_shapes_filtration = 0.0;
            // No need to compute squared_radius on a single point - alpha is 0.0
            if (f_simplex_dim > 0) {
              alpha_shapes_filtration = squared_radius(pointVector.begin(), pointVector.end());
            }
            st_.assign_filtration(f_simplex, alpha_shapes_filtration);
#ifdef DEBUG_TRACES
            std::cout << "From NaN to alpha_shapes_filtration=" << st_.filtration(f_simplex) << std::endl;
#endif  // DEBUG_TRACES
          }

          // ### Foreach Tau face of Sigma
          for (auto f_boundary : st_.boundary_simplex_range(f_simplex)) {
#ifdef DEBUG_TRACES
            std::cout << "Sigma ";
            for (auto vertex : st_.simplex_vertex_range(f_simplex)) {
              std::cout << (int) vertex << " ";
            }
            std::cout << " - Tau ";
            for (auto vertex : st_.simplex_vertex_range(f_boundary)) {
              std::cout << (int) vertex << " ";
            }
            std::cout << std::endl;
#endif  // DEBUG_TRACES
            // insert the Tau points in a vector for is_gabriel function
            typeVectorPoint pointVector;
            Vertex_handle vertexForGabriel = Vertex_handle();
            for (auto vertex : st_.simplex_vertex_range(f_boundary)) {
              pointVector.push_back(points_to_vh.right.at(vertex));
            }
            // Retrieve the Sigma point that is not part of Tau - parameter for is_gabriel function
            for (auto vertex : st_.simplex_vertex_range(f_simplex)) {
              if (std::find(pointVector.begin(), pointVector.end(), points_to_vh.right.at(vertex)) == pointVector.end()) {
                // vertex is not found in Tau
                vertexForGabriel = vertex;
                // No need to continue loop
                break;
              }
            }
            // ### If filt(Tau) is not NaN
            // ### or Tau is not Gabriel of Sigma
            if (!isnan(st_.filtration(f_boundary)) ||
                !is_gabriel(pointVector.begin(), pointVector.end(), points_to_vh.right.at(vertexForGabriel))
                ) {
              // ### filt(Tau) = fmin(filt(Tau), filt(Sigma))
              Filtration_value alpha_shapes_filtration = fmin(st_.filtration(f_boundary), st_.filtration(f_simplex));
              st_.assign_filtration(f_boundary, alpha_shapes_filtration);
#ifdef DEBUG_TRACES
              std::cout << "From Boundary to alpha_shapes_filtration=" << st_.filtration(f_boundary) << std::endl;
#endif  // DEBUG_TRACES
            }
          }
        }
      }
    }

#ifdef DEBUG_TRACES
    std::cout << "The complex contains " << st_.num_simplices() << " simplices" << std::endl;
    std::cout << "   - dimension " << st_.dimension() << "   - filtration " << st_.filtration() << std::endl;
    std::cout << std::endl << std::endl << "Iterator on Simplices in the filtration, with [filtration value]:" << std::endl;
    for (auto f_simplex : st_.filtration_simplex_range()) {
      std::cout << "   " << "[" << st_.filtration(f_simplex) << "] ";
      for (auto vertex : st_.simplex_vertex_range(f_simplex)) {
        std::cout << (int) vertex << " ";
      }
      std::cout << std::endl;
    }
#endif  // DEBUG_TRACES

#ifdef DEBUG_TRACES
    std::cout << "filtration_max=" << filtration_max << std::endl;
#endif  // DEBUG_TRACES
    st_.set_filtration(filtration_max);
  }

 public:

  /** \brief Returns the number of vertices in the complex. */
  size_t num_vertices() {
    return st_.num_vertices();
  }

  /** \brief Returns the number of simplices in the complex.
   *
   * Does not count the empty simplex. */
  const unsigned int& num_simplices() const {
    return st_.num_simplices();
  }

  /** \brief Returns an upper bound on the dimension of the simplicial complex. */
  int dimension() {
    return st_.dimension();
  }

  /** \brief Returns an upper bound of the filtration values of the simplices. */
  Filtration_value filtration() {
    return st_.filtration();
  }

  friend std::ostream& operator<<(std::ostream& os, const Alpha_shapes & alpha_shape) {
    // TODO: Program terminated with signal SIGABRT, Aborted - Maybe because of copy constructor
    Gudhi::Simplex_tree<> st = alpha_shape.st_;
    os << st << std::endl;
    return os;
  }
};

} // namespace alphashapes

} // namespace Gudhi

#endif  // SRC_ALPHA_SHAPES_INCLUDE_GUDHI_ALPHA_SHAPES_H_