summaryrefslogtreecommitdiff
path: root/src/Bitmap_cubical_complex/include/gudhi/Bitmap_cubical_complex_periodic_boundary_conditions_base.h
blob: 28911ea8555838feac968c1b7c45cbc3e86bbed9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
#pragma once
#include <cmath>
#include "Bitmap_cubical_complex_base.h"

using namespace std;

namespace Gudhi
{

namespace Cubical_complex
{

//in this class, we are storing all the elements which are in normal bitmap (i.e. the bitmap without the periodic boundary conditions). But, we set up the iterators and the procedures
//to compute boundary and coboundary in the way that it is all right. We assume here that all the cells that are on the left / bottom and so on remains, while all the cells on the
//right / top are not in the Bitmap_cubical_complex_periodic_boundary_conditions_base

template <typename T>
class Bitmap_cubical_complex_periodic_boundary_conditions_base : public Bitmap_cubical_complex_base<T>
{
public:
    //constructors that take an extra parameter:
    Bitmap_cubical_complex_periodic_boundary_conditions_base(){};
    Bitmap_cubical_complex_periodic_boundary_conditions_base( std::vector<unsigned> sizes , std::vector< bool > directions_in_which_periodic_b_cond_are_to_be_imposed );
    Bitmap_cubical_complex_periodic_boundary_conditions_base( const char* perseusStyleFile );
    Bitmap_cubical_complex_periodic_boundary_conditions_base( std::vector<unsigned> dimensions , std::vector<T> topDimensionalCells , std::vector< bool > directions_in_which_periodic_b_cond_are_to_be_imposed );

    //overwritten methods co compute boundary and coboundary
    virtual std::vector< size_t > get_boundary_of_a_cell( size_t cell )const;
    std::vector< size_t > get_coboundary_of_a_cell( size_t cell )const;
    //inline unsigned get_dimension_of_a_cell( size_t cell )const;

protected:
    std::vector< bool > directions_in_which_periodic_b_cond_are_to_be_imposed;
    void set_up_containers( const std::vector<unsigned>& sizes )
    {

        unsigned multiplier = 1;
        for ( size_t i = 0 ; i != sizes.size() ; ++i )
        {
            this->sizes.push_back(sizes[i]);
            this->multipliers.push_back(multiplier);

            if ( directions_in_which_periodic_b_cond_are_to_be_imposed[i] )
            {
                multiplier *= 2*sizes[i];
            }
            else
            {
                multiplier *= 2*sizes[i]+1;
            }
        }
        //std::reverse( this->sizes.begin() , this->sizes.end() );
        this->data = std::vector<T>(multiplier,std::numeric_limits<T>::max());
        this->total_number_of_cells = multiplier;
    }
    Bitmap_cubical_complex_periodic_boundary_conditions_base( std::vector<unsigned> sizes );
    Bitmap_cubical_complex_periodic_boundary_conditions_base( std::vector<unsigned> dimensions , std::vector<T> topDimensionalCells );
    void construct_complex_based_on_top_dimensional_cells( std::vector<unsigned> dimensions , std::vector<T> topDimensionalCells , std::vector< bool > directions_in_which_periodic_b_cond_are_to_be_imposed );
};

template <typename T>
void Bitmap_cubical_complex_periodic_boundary_conditions_base<T>::construct_complex_based_on_top_dimensional_cells( std::vector<unsigned> dimensions , std::vector<T> topDimensionalCells , std::vector< bool > directions_in_which_periodic_b_cond_are_to_be_imposed )
{
    this->directions_in_which_periodic_b_cond_are_to_be_imposed = directions_in_which_periodic_b_cond_are_to_be_imposed;
    this->set_up_containers( dimensions );

    size_t i = 0;
    for ( typename Bitmap_cubical_complex_periodic_boundary_conditions_base<T>::Top_dimensional_cells_iterator it = this->top_dimensional_cells_begin() ; it != this->top_dimensional_cells_end() ; ++it )
    {
        *it = topDimensionalCells[i];
        ++i;
    }
    this->impose_lower_star_filtration();
}

template <typename T>
Bitmap_cubical_complex_periodic_boundary_conditions_base<T>::Bitmap_cubical_complex_periodic_boundary_conditions_base( std::vector<unsigned> sizes , std::vector< bool > directions_in_which_periodic_b_cond_are_to_be_imposed )
{
    this->directions_in_which_periodic_b_cond_are_to_be_imposed = directions_in_which_periodic_b_cond_are_to_be_imposed;
    this->set_up_containers( sizes );
}

template <typename T>
Bitmap_cubical_complex_periodic_boundary_conditions_base<T>::Bitmap_cubical_complex_periodic_boundary_conditions_base( const char* perseus_style_file )
{
    //for Perseus style files:
    bool dbg = false;

    ifstream inFiltration;
    inFiltration.open( perseus_style_file );
    unsigned dimensionOfData;
    inFiltration >> dimensionOfData;

    this->directions_in_which_periodic_b_cond_are_to_be_imposed = std::vector<bool>( dimensionOfData , false );

    std::vector<unsigned> sizes;
    sizes.reserve( dimensionOfData );
    for ( size_t i = 0 ; i != dimensionOfData ; ++i )
    {
        int size_in_this_dimension;
        inFiltration >> size_in_this_dimension;
        if ( size_in_this_dimension < 0 )
        {
            this->directions_in_which_periodic_b_cond_are_to_be_imposed[i] = true;
        }
        sizes.push_back( abs(size_in_this_dimension) );
    }
    this->set_up_containers( sizes );

    typename Bitmap_cubical_complex_periodic_boundary_conditions_base<T>::Top_dimensional_cells_iterator it(*this);
    it = this->top_dimensional_cells_begin();

    while ( !inFiltration.eof() )
    {
        double filtrationLevel;
        inFiltration >> filtrationLevel;
        if ( inFiltration.eof() )break;

        if ( dbg )
        {
            cerr << "Cell of an index : "
                 << it.compute_index_in_bitmap()
                 << " and dimension: "
                 << this->get_dimension_of_a_cell(it.compute_index_in_bitmap())
                 << " get the value : " << filtrationLevel << endl;
        }
        *it = filtrationLevel;
        ++it;
    }
    inFiltration.close();
    this->impose_lower_star_filtration();

    /*
     char* filename = (char*)perseus_style_file;
     //char* filename = "combustionWithPeriodicBoundaryConditions/v0/tV0_000000.float";
     ifstream file( filename , ios::binary | ios::ate );
     unsigned realSizeOfFile = file.tellg();
     file.close();
     realSizeOfFile = realSizeOfFile/sizeof(T);

     unsigned w, h, d;

     w = h = d = ceil(pow( realSizeOfFile , (double)(1/(double)3) ));

     T* slice = new T[w*h*d];
     if (slice == NULL)
     {
        cerr << "Allocation error, cannot allocate " << w*h*d*sizeof(T) << " bytes to store the data from the file. The program will now terminate \n";
        exit(EXIT_FAILURE);
     }

     FILE* fp;
     if ((fp=fopen( filename, "rb" )) == NULL )
     {
         cerr << "Cannot open the file: " << filename << ". The program will now terminate \n";
         exit(1);
     }
     fread( slice,4,w*h*d,fp );
     fclose(fp);
     std::vector<T> data(slice,slice+w*h*d);
     delete[] slice;
     std::vector< unsigned > sizes;
     sizes.push_back(w);
     sizes.push_back(w);
     sizes.push_back(w);

     std::vector< bool > directions;
     directions.push_back( true );
     directions.push_back( true );
     directions.push_back( true );
     Bitmap_cubical_complex_periodic_boundary_conditions_base<T> b( sizes, data, directions );
     *this = b;
     */
}

template <typename T>
Bitmap_cubical_complex_periodic_boundary_conditions_base<T>::Bitmap_cubical_complex_periodic_boundary_conditions_base( std::vector<unsigned> sizes )
{
    this->directions_in_which_periodic_b_cond_are_to_be_imposed = std::vector<bool>( sizes.size() , false );
    this->set_up_containers( sizes );
}

template <typename T>
Bitmap_cubical_complex_periodic_boundary_conditions_base<T>::Bitmap_cubical_complex_periodic_boundary_conditions_base( std::vector<unsigned> dimensions , std::vector<T> topDimensionalCells )
{
    std::vector<bool> directions_in_which_periodic_b_cond_are_to_be_imposed = std::vector<bool>( dimensions.size() , false );
    this->construct_complex_based_on_top_dimensional_cells( dimensions , topDimensionalCells , directions_in_which_periodic_b_cond_are_to_be_imposed );
}





template <typename T>
Bitmap_cubical_complex_periodic_boundary_conditions_base<T>::Bitmap_cubical_complex_periodic_boundary_conditions_base( std::vector<unsigned> dimensions , std::vector<T> topDimensionalCells , std::vector< bool > directions_in_which_periodic_b_cond_are_to_be_imposed )
{
    this->construct_complex_based_on_top_dimensional_cells( dimensions , topDimensionalCells , directions_in_which_periodic_b_cond_are_to_be_imposed );
}

//***********************Methods************************//

template <typename T>
std::vector< size_t >  Bitmap_cubical_complex_periodic_boundary_conditions_base<T>::get_boundary_of_a_cell( size_t cell )const
{
    bool dbg = false;
    if ( dbg ){cerr << "Computations of boundary of a cell : " << cell << endl;}

    std::vector< size_t > boundary_elements;
    size_t cell1 = cell;
    for ( size_t i = this->multipliers.size() ; i != 0 ; --i )
    {
        unsigned position = cell1/this->multipliers[i-1];
        //this cell have a nonzero length in this direction, therefore we can compute its boundary in this direction.

        if ( position%2 == 1 )
        {
            //if there are no periodic boundary conditions in this direction, we do not have to do anything.
            if ( !directions_in_which_periodic_b_cond_are_to_be_imposed[i-1] )
            {
                //cerr << "A\n";
                boundary_elements.push_back( cell - this->multipliers[ i-1 ] );
                boundary_elements.push_back( cell + this->multipliers[ i-1 ] );
                if (dbg){cerr << cell - this->multipliers[ i-1 ] << " " << cell + this->multipliers[ i-1 ] << " ";}
            }
            else
            {
                //in this direction we have to do boundary conditions. Therefore, we need to check if we are not at the end.
                if ( position != 2*this->sizes[ i-1 ]-1 )
                {
                    //cerr << "B\n";
                    boundary_elements.push_back( cell - this->multipliers[ i-1 ] );
                    boundary_elements.push_back( cell + this->multipliers[ i-1 ] );
                    if (dbg){cerr << cell - this->multipliers[ i-1 ] << " " << cell + this->multipliers[ i-1 ] << " ";}
                }
                else
                {
                    //cerr << "C\n";
                    boundary_elements.push_back( cell - this->multipliers[ i-1 ] );
                    boundary_elements.push_back( cell - (2*this->sizes[ i-1 ]-1)*this->multipliers[ i-1 ] );
                    if (dbg){cerr << cell - this->multipliers[ i-1 ] << " " << cell - (2*this->sizes[ i-1 ]-1)*this->multipliers[ i-1 ] << " ";}
                }
            }
        }
        cell1 = cell1%this->multipliers[i-1];
    }
    return boundary_elements;
}

template <typename T>
std::vector< size_t > Bitmap_cubical_complex_periodic_boundary_conditions_base<T>::get_coboundary_of_a_cell( size_t cell )const
{
    std::vector<unsigned> counter = this->compute_counter_for_given_cell( cell );
    std::vector< size_t > coboundary_elements;
    size_t cell1 = cell;
    for ( size_t i = this->multipliers.size() ; i != 0 ; --i )
    {
        unsigned position = cell1/this->multipliers[i-1];
        //if the cell has zero length in this direction, then it will have cbd in this direction.
        if ( position%2 == 0 )
        {
            if ( !this->directions_in_which_periodic_b_cond_are_to_be_imposed[i-1] )
            {
                //no periodic boundary conditions in this direction
                if ( (counter[i-1] != 0) && (cell > this->multipliers[i-1]) )
                {
                    coboundary_elements.push_back( cell - this->multipliers[i-1] );
                }
                if ( (counter[i-1] != 2*this->sizes[i-1]) && (cell + this->multipliers[i-1] < this->data.size()) )
                {
                    coboundary_elements.push_back( cell + this->multipliers[i-1] );
                }
            }
            else
            {
                //we want to have periodic boundary conditions in this direction
                if ( counter[i-1] != 0 )
                {
                    coboundary_elements.push_back( cell - this->multipliers[i-1] );
                    coboundary_elements.push_back( cell + this->multipliers[i-1] );
                }
                else
                {
                    //in this case counter[i-1] == 0.
                    coboundary_elements.push_back( cell + this->multipliers[i-1] );
                    coboundary_elements.push_back( cell + (2*this->sizes[ i-1 ]-1)*this->multipliers[i-1] );
                }
            }
        }

        cell1 = cell1%this->multipliers[i-1];
    }
    return coboundary_elements;
}



}//Cubical_complex
}//namespace Gudhi