summaryrefslogtreecommitdiff
path: root/src/Bottleneck_distance/include/gudhi/Graph_matching.h
blob: d88608418029a69d078728aebdfbdbc0b8578b94 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
/*    This file is part of the Gudhi Library. The Gudhi library
 *    (Geometric Understanding in Higher Dimensions) is a generic C++
 *    library for computational topology.
 *
 *    Author(s):       Francois Godi
 *
 *    Copyright (C) 2015  INRIA Sophia-Antipolis (France)
 *
 *    This program is free software: you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation, either version 3 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#ifndef SRC_BOTTLENECK_INCLUDE_GUDHI_GRAPH_MATCHING_H_
#define SRC_BOTTLENECK_INCLUDE_GUDHI_GRAPH_MATCHING_H_

#include <deque>

#include <gudhi/Neighbors_finder.h>

namespace Gudhi {

namespace Bottleneck_distance {

/** \brief Function to use in order to compute the Bottleneck distance between two persistence diagrams.
 *
 *
 *
 * \ingroup bottleneck_distance
 */
template<typename Persistence_diagram1, typename Persistence_diagram2>
double compute(const Persistence_diagram1& diag1, const Persistence_diagram2& diag2, double e = 0.);

/** \internal \brief Structure representing a graph matching. The graph is a Persistence_diagrams_graph.
 *
 * \ingroup bottleneck_distance
 */
class Graph_matching {
public:
    /** \internal \brief Constructor constructing an empty matching. */
    explicit Graph_matching();
    /** \internal \brief Copy operator. */
    Graph_matching& operator=(const Graph_matching& m);
    /** \internal \brief Is the matching perfect ? */
    bool perfect() const;
    /** \internal \brief Augments the matching with a maximal set of edge-disjoint shortest augmenting paths. */
    bool multi_augment();
    /** \internal \brief Sets the maximum length of the edges allowed to be added in the matching, 0 initially. */
    void set_r(double r);

private:
    double r;
    /** \internal \brief Given a point from V, provides its matched point in U, null_point_index() if there isn't. */
    std::vector<int> v_to_u;
    /** \internal \brief All the unmatched points in U. */
    std::list<int> unmatched_in_u;

    /** \internal \brief Provides a Layered_neighbors_finder dividing the graph in layers. Basically a BFS. */
    std::shared_ptr<Layered_neighbors_finder> layering() const;
    /** \internal \brief Augments the matching with a simple path no longer than max_depth. Basically a DFS. */
    bool augment(Layered_neighbors_finder & layered_nf, int u_start_index, int max_depth);
    /** \internal \brief Update the matching with the simple augmenting path given as parameter. */
    void update(std::deque<int> & path);
};

inline Graph_matching::Graph_matching()
    : r(0.), v_to_u(G::size(), null_point_index()), unmatched_in_u() {
    for (int u_point_index = 0; u_point_index < G::size(); ++u_point_index)
        unmatched_in_u.emplace_back(u_point_index);
}

inline Graph_matching& Graph_matching::operator=(const Graph_matching& m) {
    r = m.r;
    v_to_u = m.v_to_u;
    unmatched_in_u = m.unmatched_in_u;
    return *this;
}

inline bool Graph_matching::perfect() const {
    return unmatched_in_u.empty();
}

inline bool Graph_matching::multi_augment() {
    if (perfect())
        return false;
    Layered_neighbors_finder layered_nf = *layering();
    int max_depth = layered_nf.vlayers_number()*2 - 1;
    double rn = sqrt(G::size());
    // verification of a necessary criterion in order to shortcut if possible
    if (max_depth <0 || (unmatched_in_u.size() > rn && max_depth >= rn))
        return false;
    bool successful = false;
    std::list<int> tries(unmatched_in_u);
    for (auto it = tries.cbegin(); it != tries.cend(); it++)
        // 'augment' has side-effects which have to be always executed, don't change order
        successful =  augment(layered_nf, *it, max_depth) || successful;
    return successful;
}

inline void Graph_matching::set_r(double r) {
    this->r = r;
}

inline bool Graph_matching::augment(Layered_neighbors_finder & layered_nf, int u_start_index, int max_depth) {
    //V vertices have at most one successor, thus when we backtrack from U we can directly pop_back 2 vertices.
    std::deque<int> path;
    path.emplace_back(u_start_index);
    do {
        if (static_cast<int>(path.size()) > max_depth) {
            path.pop_back();
            path.pop_back();
        }
        if (path.empty())
            return false;
        path.emplace_back(layered_nf.pull_near(path.back(), static_cast<int>(path.size())/2));
        while (path.back() == null_point_index()) {
            path.pop_back();
            path.pop_back();
            if (path.empty())
                return false;
            path.pop_back();
            path.emplace_back(layered_nf.pull_near(path.back(), path.size() / 2));
        }
        path.emplace_back(v_to_u.at(path.back()));
    } while (path.back() != null_point_index());
    //if v_to_u.at(path.back()) has no successor, path.back() is an exposed vertex
    path.pop_back();
    update(path);
    return true;
}

inline std::shared_ptr<Layered_neighbors_finder> Graph_matching::layering() const {
    std::list<int> u_vertices(unmatched_in_u);
    std::list<int> v_vertices;
    Neighbors_finder nf(r);
    for (int v_point_index = 0; v_point_index < G::size(); ++v_point_index)
        nf.add(v_point_index);
    std::shared_ptr<Layered_neighbors_finder> layered_nf(new Layered_neighbors_finder(r));
    for(int layer = 0; !u_vertices.empty(); layer++) {
        // one layer is one step in the BFS
        for (auto it1 = u_vertices.cbegin(); it1 != u_vertices.cend(); ++it1) {
            std::shared_ptr<std::list<int>> u_succ(nf.pull_all_near(*it1));
            for (auto it2 = u_succ->begin(); it2 != u_succ->end(); ++it2) {
                layered_nf->add(*it2, layer);
                v_vertices.emplace_back(*it2);
            }
        }
        // When the above for finishes, we have progress of one half-step (from U to V) in the BFS
        u_vertices.clear();
        bool end = false;
        for (auto it = v_vertices.cbegin(); it != v_vertices.cend(); it++)
            if (v_to_u.at(*it) == null_point_index())
                // we stop when a nearest exposed V vertex (from U exposed vertices) has been found
                end = true;
            else
                u_vertices.emplace_back(v_to_u.at(*it));
        // When the above for finishes, we have progress of one half-step (from V to U) in the BFS
        if (end)
            return layered_nf;
        v_vertices.clear();
    }
    return layered_nf;
}

inline void Graph_matching::update(std::deque<int>& path) {
    unmatched_in_u.remove(path.front());
    for (auto it = path.cbegin(); it != path.cend(); ++it) {
        // Be careful, the iterator is incremented twice each time
        int tmp = *it;
        v_to_u[*(++it)] = tmp;
    }
}

template<typename Persistence_diagram1, typename Persistence_diagram2>
double compute_exactly(const Persistence_diagram1 &diag1, const Persistence_diagram2 &diag2) {
    G::initialize(diag1, diag2, 0.);
    std::shared_ptr< std::vector<double> > sd(G::sorted_distances());
    int idmin = 0;
    int idmax = sd->size() - 1;
    // alpha can be modified, this will change the complexity
    double alpha = pow(sd->size(), 0.25);
    Graph_matching m;
    Graph_matching biggest_unperfect;
    while (idmin != idmax) {
        int step = static_cast<int>((idmax - idmin) / alpha);
        m.set_r(sd->at(idmin + step));
        while (m.multi_augment());
        //The above while compute a maximum matching (according to the r setted before)
        if (m.perfect()) {
            idmax = idmin + step;
            m = biggest_unperfect;
        } else {
            biggest_unperfect = m;
            idmin = idmin + step + 1;
        }
    }
    return sd->at(idmin);
}

template<typename Persistence_diagram1, typename Persistence_diagram2>
double compute(const Persistence_diagram1 &diag1, const Persistence_diagram2 &diag2, double e) {
    if(e< std::numeric_limits<double>::min())
        return compute_exactly(diag1, diag2);
    G::initialize(diag1, diag2, e);
    double d = 0.;
    double f = G::diameter();
    while (f-d > e){
        Graph_matching m;
        m.set_r((d+f)/2.);
        while (m.multi_augment());
        //The above while compute a maximum matching (according to the r setted before)
        if (m.perfect()) 
            f = (d+f)/2.;
         else 
            d= (d+f)/2.;
    }
    return d;
}

}  // namespace Bottleneck_distance

}  // namespace Gudhi

#endif  // SRC_BOTTLENECK_INCLUDE_GUDHI_GRAPH_MATCHING_H_