summaryrefslogtreecommitdiff
path: root/src/Gudhi_stat/example/persistence_landscape_on_grid.cpp
blob: ddda78d2efadd833b8cdf702fe2f8d8f0a46af9a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
/*    This file is part of the Gudhi Library. The Gudhi library
 *    (Geometric Understanding in Higher Dimensions) is a generic C++
 *    library for computational topology.
 *
 *    Author(s):       Pawel Dlotko
 *
 *    Copyright (C) 2015  INRIA (France)
 *
 *    This program is free software: you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation, either version 3 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */



#include <gudhi/abstract_classes/Abs_Topological_data.h>
#include <gudhi/concretizations/Persistence_landscape_on_grid.h>



using namespace Gudhi;
using namespace Gudhi::Gudhi_stat;

#include <iostream>


int main( int argc , char** argv )
{
	//create two simple vectors with birth--death pairs:
	
	std::vector< std::pair< double , double > > persistence1;
	std::vector< std::pair< double , double > > persistence2;
	
	persistence1.push_back( std::make_pair(1,2) );
	persistence1.push_back( std::make_pair(6,8) );
	persistence1.push_back( std::make_pair(0,4) );
	persistence1.push_back( std::make_pair(3,8) );
	
	persistence2.push_back( std::make_pair(2,9) );
	persistence2.push_back( std::make_pair(1,6) );
	persistence2.push_back( std::make_pair(3,5) );
	persistence2.push_back( std::make_pair(6,10) );
	
	//create two persistence landscapes based on persistence1 and persistence2:
	Persistence_landscape_on_grid l1( persistence1 , 0 , 11 , 20 );
	Persistence_landscape_on_grid l2( persistence2 , 0 , 11 , 20 );
	
	//This is how to compute integral of landscapes:
	std::cout << "Integral of the first landscape : " << l1.compute_integral_of_landscape() << endl;
	std::cout << "Integral of the second landscape : " << l2.compute_integral_of_landscape() << endl;
	
	//And here how to write landscapes to stream:
	std::cout << "l1 : " << l1 << std::endl;
	std::cout << "l2 : " << l2 << std::endl;
	
	//here are the maxima of the functions:
	std::cout << "Maximum of l1 : " << l1.compute_maximum() << std::endl;
	std::cout << "Maximum of l2 : " << l2.compute_maximum() << std::endl;
	
	//here are the norms of landscapes:
	std::cout << "L^1 Norm of l1 : " << l1.compute_norm_of_landscape( 1. ) << std::endl;
	std::cout << "L^1 Norm of l2 : " << l2.compute_norm_of_landscape( 1. ) << std::endl;
	
	//here is the average of landscapes:
	Persistence_landscape_on_grid average;
	std::vector< Abs_Topological_data_with_averages* > to_average;
	to_average.push_back( (Abs_Topological_data_with_averages*)(&l1) );
	to_average.push_back( (Abs_Topological_data_with_averages*)(&l2) );
	average.compute_average( to_average );
	std::cout << "average : " << average << std::endl;
	
	//here is the distance of landscapes:
	std::cout << "Distance : " << l1.distance( (Abs_Topological_data_with_distances*)(&l2) ) << std::endl;
	
	//here is the scalar product of landscapes:
	std::cout << "Scalar product : " << l1.compute_scalar_product( (Abs_Topological_data_with_scalar_product*)(&l2) ) << std::endl;
	
	//here is how to create a file which is suitable for vizualization via gnuplot:
	average.plot( "average_landscape" );
		
		
	return 0;
}


//Below I am storing the code used to generate tests for that functionality.
/*
	Persistence_landscape_on_grid l( "file_with_diagram_1" , 100 );
	l.print_to_file( "landscape_from_file_with_diagram_1" );
	
	Persistence_landscape_on_grid g;
	g.load_landscape_from_file( "landscape_from_file_with_diagram_1" );
	
	cerr << ( l == g );
	*/
	
	/*
	Persistence_landscape_on_grid l( "file_with_diagram_1" , 100 );
	cerr << l << endl;
	cerr << l.compute_integral_of_landscape() << endl;
	*/
	 
	 /*
	 Persistence_landscape_on_grid p( "file_with_diagram_1" , 100 );	
	 for ( size_t level = 0 ; level != 30 ; ++level )
	 {
		 double integral = p.compute_integral_of_landscape( level );
		 cerr << integral << endl;
	 }
	 */
	 
	 /*
	 Persistence_landscape_on_grid p( "file_with_diagram_1" , 100 );	
	 for ( size_t power = 0 ; power != 5 ; ++power )
	 {
		 double integral = p.compute_integral_of_landscape( (double)power );
		 cerr << integral << endl;
	 }
	 */
	 
	 /*
	 Persistence_landscape_on_grid p( "file_with_diagram_1" , 100 );	
	 double x = 0.0012321;
	 double dx = 0.05212;
	 for ( size_t i = 0 ; i != 10 ; ++i )
	 {  		
		cerr << p.compute_value_at_a_given_point(10,x) << endl;
		x += dx;
	 }
	 */
	 
	 /*	
	Persistence_landscape_on_grid p( "file_with_diagram_1",100 );	
	Persistence_landscape_on_grid second("file_with_diagram_1",100 );		
	Persistence_landscape_on_grid sum = p + second;
	Persistence_landscape_on_grid difference = p - second;
	Persistence_landscape_on_grid multiply_by_scalar = 10*p;
	sum.print_to_file( "sum_on_grid_test" );
	difference.print_to_file( "difference_on_grid_test" );
	multiply_by_scalar.print_to_file( "multiply_by_scalar_on_grid_test" );
	*/
	
	
	/*	
	Persistence_landscape_on_grid p( "file_with_diagram_1" , 0 , 1 , 100 );
	Persistence_landscape_on_grid second("file_with_diagram_1", 0 , 1 , 100 );	
	Persistence_landscape_on_grid sum = p + second;
	
	cerr << "max : " << p.compute_maximum() << endl;
	cerr << "1-norm : " << p.compute_norm_of_landscape(1) << endl;
	cerr << "2-norm : " << p.compute_norm_of_landscape(2) << endl;
	cerr << "3-norm : " << p.compute_norm_of_landscape(3) << endl;
	
	cerr <<  compute_discance_of_landscapes_on_grid(p,sum,1) << endl;
	cerr <<  compute_discance_of_landscapes_on_grid(p,sum,2) << endl;
	cerr <<  compute_discance_of_landscapes_on_grid(p,sum,-1)  << endl;
	*/
	
	/*
	Persistence_landscape_on_grid p( "file_with_diagram", 0,1,100 );
	Persistence_landscape_on_grid q( "file_with_diagram_1", 0,1,100 );	
	std::vector< Abs_Topological_data_with_averages* > to_average;
	to_average.push_back( &p );
	to_average.push_back( &q );
	Persistence_landscape_on_grid av;	
	av.compute_average( to_average );
	av.print_to_file("average_on_a_grid");

	Persistence_landscape_on_grid template_average;
	template_average.load_landscape_from_file( "average_on_a_grid" );
	if ( template_average == av )
	{
		cerr << "OK OK \n";
	}*/
	
	/*
	Persistence_landscape_on_grid p( "file_with_diagram" , 0,1,10000);
	Persistence_landscape_on_grid q( "file_with_diagram_1" , 0,1,10000);
	cerr <<  p.distance( &q )<< endl;
	cerr <<  p.distance( &q , 2 ) << endl;
	cerr <<  p.distance( &q , -1 ) << endl;
	*/
	
/*
	Persistence_landscape_on_grid p( "file_with_diagram", 0,1,10000 );
	Persistence_landscape_on_grid q( "file_with_diagram_1", 0,1,10000 );
	
	//std::vector< std::pair< double,double > > aa;
	//aa.push_back( std::make_pair( 0,1 ) );
	//Persistence_landscape_on_grid p( aa, 0,1,10 );
	//Persistence_landscape_on_grid q( aa, 0,1,10 );
	cerr <<  p.compute_scalar_product( &q ) << endl;
*/