summaryrefslogtreecommitdiff
path: root/src/Witness_complex/example/protected_sets/protected_sets_paper.cpp
blob: f3df3f1e6b812be7deda32845588e5660013263d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
#ifndef PROTECTED_SETS_H
#define PROTECTED_SETS_H

#include <algorithm>
#include <CGAL/Cartesian_d.h>
#include <CGAL/Epick_d.h>
#include <CGAL/Euclidean_distance.h>
#include <CGAL/Kernel_d/Sphere_d.h>
#include <CGAL/Kernel_d/Hyperplane_d.h>
#include <CGAL/Kernel_d/Vector_d.h>

typedef CGAL::Epick_d<CGAL::Dynamic_dimension_tag> K;
typedef K::Point_d Point_d;
typedef K::Vector_d Vector_d;
typedef K::Oriented_side_d Oriented_side_d;
typedef K::Has_on_positive_side_d Has_on_positive_side_d;
typedef K::Sphere_d Sphere_d;
typedef K::Hyperplane_d Hyperplane_d;

typedef CGAL::Delaunay_triangulation<K> Delaunay_triangulation;
typedef Delaunay_triangulation::Facet Facet;
typedef Delaunay_triangulation::Vertex_handle Delaunay_vertex;
typedef Delaunay_triangulation::Full_cell_handle Full_cell_handle;

typedef std::vector<Point_d> Point_Vector;
typedef CGAL::Euclidean_distance<Traits_base> Euclidean_distance;

FT  _sfty = pow(10,-14);

///////////////////////////////////////////////////////////////////////////////////////////////////////////
// AUXILLARY FUNCTIONS
///////////////////////////////////////////////////////////////////////////////////////////////////////////

/** Insert a point in Delaunay triangulation. If you are working in a flat torus, the procedure adds all the 3^d copies in adjacent cubes as well 
 *  
 *  W is the initial point vector
 *  chosen_landmark is the index of the chosen point in W
 *  landmarks_ind is the vector of indices of already chosen points in W
 *  delaunay is the Delaunay triangulation
 *  landmark_count is the current number of chosen vertices
 *  torus is true iff you are working on a flat torus [-1,1]^d
 *  OUT: Vertex handle to the newly inserted point
 */
Delaunay_vertex insert_delaunay_landmark_with_copies(Point_d& p, Delaunay_triangulation& delaunay, int& landmark_count, bool torus)
{
  if (!torus)
    {
      Delaunay_vertex v =delaunay.insert(p);
      landmark_count++;
      return v;
    }
  else
    {
      int D = W[0].size();
      int nb_cells = pow(3, D);
      Delaunay_vertex v;
      for (int i = 0; i < nb_cells; ++i)
        {
          std::vector<FT> point;
          int cell_i = i;
          for (int l = 0; l < D; ++l)
            {
              point.push_back(p[l] + 2.0*(cell_i%3-1));
              cell_i /= 3;
            }
          v = delaunay.insert(point);
        }
      landmark_count++;
      return v;
    }
}

/** Small check if the vertex v is in the full cell fc
 */

bool vertex_is_in_full_cell(Delaunay_triangulation::Vertex_handle v, Full_cell_handle fc)
{
  for (auto v_it = fc->vertices_begin(); v_it != fc->vertices_end(); ++v_it)
    if (*v_it == v)
      return true;
  return false;
}

/** Fill chosen point vector from indices with copies if you are working on a flat torus
 *  
 *  IN:  W is the point vector
 *  OUT: landmarks is the output vector
 *  IN:  landmarks_ind is the vector of indices
 *  IN:  torus is true iff you are working on a flat torus [-1,1]^d
 */

void fill_landmarks(Point_Vector& W, Point_Vector& landmarks, std::vector<int>& landmarks_ind, bool torus)
{
  if (!torus)
    for (unsigned j = 0; j < landmarks_ind.size(); ++j)
      landmarks.push_back(W[landmarks_ind[j]]);
  else
    {
      int D = W[0].size();
      int nb_cells = pow(3, D);
      int nbL = landmarks_ind.size();
      // Fill landmarks
      for (int i = 0; i < nb_cells-1; ++i)
        for (int j = 0; j < nbL; ++j)
          {
            int cell_i = i;
            Point_d point;
            for (int l = 0; l < D; ++l)
              {
                point.push_back(W[landmarks_ind[j]][l] + 2.0*(cell_i-1));
                cell_i /= 3;
              }
            landmarks.push_back(point);
          }
    }
}

/** Fill a vector of all simplices in the Delaunay triangulation giving integer indices to vertices
 *
 *  IN: t is the Delaunay triangulation
 *  OUT: full_cells is the output vector
 */

void fill_full_cell_vector(Delaunay_triangulation& t, std::vector<std::vector<int>>& full_cells)
{
  // Store vertex indices in a map
  int ind = 0; //index of a vertex
  std::map<Delaunay_triangulation::Vertex_handle, int> index_of_vertex;
  for (auto v_it = t.vertices_begin(); v_it != t.vertices_end(); ++v_it)
    if (t.is_infinite(v_it))
      continue;
    else
      index_of_vertex[v_it] = ind++;
  // Write full cells as vectors in full_cells
  for (auto fc_it = t.full_cells_begin(); fc_it != t.full_cells_end(); ++fc_it)
    {
      if (t.is_infinite(fc_it))
        continue;
      Point_Vector vertices;
      for (auto fc_v_it = fc_it->vertices_begin(); fc_v_it != fc_it->vertices_end(); ++fc_v_it)
        vertices.push_back((*fc_v_it)->point());
      Sphere_d cs( vertices.begin(), vertices.end());
      Point_d csc = cs.center();
      bool in_cube = true; 
      for (auto xi = csc.cartesian_begin(); xi != csc.cartesian_end(); ++xi)
        if (*xi > 1.0 || *xi < -1.0)
          {
            in_cube = false; break;
          }
      if (!in_cube)
        continue;
      std::vector<int> cell;
      for (auto v_it = fc_it->vertices_begin(); v_it != fc_it->vertices_end(); ++v_it)
        cell.push_back(index_of_vertex[*v_it]);
      full_cells.push_back(cell);
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////////////
// IS VIOLATED TEST
////////////////////////////////////////////////////////////////////////////////////////////////////////////

/** Check if a newly created cell is protected from old vertices
 *  
 *  t is the Delaunay triangulation
 *  vertices is the vector containing the point to insert and a facet f in t
 *  v1 is the vertex of t, such that f and v1 form a simplex
 *  v2 is the vertex of t, such that f and v2 form another simplex
 *  delta is the protection constant
 *  power_protection is true iff the delta-power protection is used
 */

bool new_cell_is_violated(Delaunay_triangulation& t, std::vector<Point_d>& vertices, const Delaunay_vertex& v1, const Delaunay_vertex v2, FT delta, bool power_protection, FT theta0)
{
  assert(vertices.size() == vertices[0].size() ||
         vertices.size() == vertices[0].size() + 1); //simplex size = d | d+1
  assert(v1 != v2);
  if (vertices.size() == vertices[0].size() + 1)
  // FINITE CASE
    {
      Sphere_d cs(vertices.begin(), vertices.end());
      Point_d center_cs = cs.center();
      FT r = sqrt(Euclidean_distance().transformed_distance(center_cs, vertices[0]));
      /*
      for (auto v_it = t.vertices_begin(); v_it != t.vertices_end(); ++v_it)
        if (!t.is_infinite(v_it)) 
          {
            //CGAL::Oriented_side side = Oriented_side_d()(cs, (v_it)->point()); 
            if (std::find(vertices.begin(), vertices.end(), v_it->point()) == vertices.end())
              {
                FT dist2 = Euclidean_distance().transformed_distance(center_cs, (v_it)->point());
                if (!power_protection)
                  if (dist2 >= r*r-_sfty && dist2 <= (r+delta)*(r+delta))
                    return true;
                if (power_protection)
                  if (dist2 >= r*r-_sfty && dist2 <= r*r+delta*delta) 
                    return true;                 
              }
          }
      */
      // Check if the simplex is thick enough
      Hyperplane_d tau_h(vertices.begin()+1, vertices.end());
      Vector_d orth_tau = tau_h.orthogonal_vector();
      /*
               p_s1 = Vector_d(*(vertices.begin()), *(vertices.begin()+1));
      */
      //std::cout << "||orth_tau|| = " << sqrt(orth_tau.squared_length()) << "\n";
      FT orth_length = sqrt(orth_tau.squared_length());
      K::Cartesian_const_iterator_d o_it, p_it, s_it, c_it;
      // Compute the altitude
      FT h = 0;
      for (o_it = orth_tau.cartesian_begin(),
           p_it = vertices.begin()->cartesian_begin(),
           s_it = (vertices.begin()+1)->cartesian_begin();
           o_it != orth_tau.cartesian_end();
           ++o_it, ++p_it, ++s_it)
        h += (*o_it)*(*p_it - *s_it)/orth_length;
      h = fabs(h);
      // Is the center inside the box?
      bool inside_the_box = true;
      for (c_it = center_cs.cartesian_begin(); c_it != center_cs.cartesian_end(); ++c_it)
        if (*c_it > 1.0 || *c_it < -1.0)
          {
            inside_the_box = false; break;
          }
      if (inside_the_box && h/r < theta0)
        return true;
      if (!t.is_infinite(v1))
        {
          FT dist2 = Euclidean_distance().transformed_distance(center_cs, v1->point());
          if (!power_protection)
            if (dist2 >= r*r-_sfty && dist2 <= (r+delta)*(r+delta))
              return true;
          if (power_protection)
            if (dist2 >= r*r-_sfty && dist2 <= r*r+delta*delta) 
              return true;
        }
      if (!t.is_infinite(v2))
        {
          FT dist2 = Euclidean_distance().transformed_distance(center_cs, v2->point());
          if (!power_protection)
            if (dist2 >= r*r-_sfty && dist2 <= (r+delta)*(r+delta))
              return true;
          if (power_protection)
            if (dist2 >= r*r-_sfty && dist2 <= r*r+delta*delta) 
              return true;
        }
    }
  else
  // INFINITE CASE
    {
      Delaunay_triangulation::Vertex_iterator v = t.vertices_begin();
      while (t.is_infinite(v) || std::find(vertices.begin(), vertices.end(), v->point()) == vertices.end())
        v++;
      Hyperplane_d facet_plane(vertices.begin(), vertices.end(), v->point(), CGAL::ON_POSITIVE_SIDE);
      Vector_d orth_v = facet_plane.orthogonal_vector();
      /*
      for (auto v_it = t.vertices_begin(); v_it != t.vertices_end(); ++v_it)
        if (!t.is_infinite(v_it))
          if (std::find(vertices.begin(), vertices.end(), v_it->point()) == vertices.end())
            {
              std::vector<FT> coords;
              Point_d p = v_it->point();
              auto orth_i = orth_v.cartesian_begin(), p_i = p.cartesian_begin();
              for (; orth_i != orth_v.cartesian_end(); ++orth_i, ++p_i)
                coords.push_back((*p_i) - (*orth_i) * delta / sqrt(orth_v.squared_length()));
              Point_d p_delta = Point_d(coords);
              bool p_is_inside = !Has_on_positive_side_d()(facet_plane, p);
              bool p_delta_is_inside = !Has_on_positive_side_d()(facet_plane, p_delta);
              if (!p_is_inside && p_delta_is_inside)
                return true;
            }
      */
      if (!t.is_infinite(v1))
        {
          std::vector<FT> coords;
          Point_d p = v1->point();
          auto orth_i = orth_v.cartesian_begin(), p_i = p.cartesian_begin();
          for (; orth_i != orth_v.cartesian_end(); ++orth_i, ++p_i)
            coords.push_back((*p_i) - (*orth_i) * delta / sqrt(orth_v.squared_length()));
          Point_d p_delta = Point_d(coords);
          bool p_is_inside = !Has_on_positive_side_d()(facet_plane, p);
          bool p_delta_is_inside = !Has_on_positive_side_d()(facet_plane, p_delta);
          if (!power_protection && !p_is_inside && p_delta_is_inside)
            return true;
        }
      if (!t.is_infinite(v2))
        {
          std::vector<FT> coords;
          Point_d p = v2->point();
          auto orth_i = orth_v.cartesian_begin(), p_i = p.cartesian_begin();
          for (; orth_i != orth_v.cartesian_end(); ++orth_i, ++p_i)
            coords.push_back((*p_i) - (*orth_i) * delta / sqrt(orth_v.squared_length()));
          Point_d p_delta = Point_d(coords);
          bool p_is_inside = !Has_on_positive_side_d()(facet_plane, p);
          bool p_delta_is_inside = !Has_on_positive_side_d()(facet_plane, p_delta);
          if (!power_protection && !p_is_inside && p_delta_is_inside)
            return true;
        }
    }
  return false;
}
  
/** Auxillary recursive function to check if the point p violates the protection of the cell c and
 *  if there is a violation of an eventual new cell
 *
 *  p is the point to insert
 *  t is the current triangulation
 *  c is the current cell (simplex)
 *  parent_cell is the parent cell (simplex)
 *  index is the index of the facet between c and parent_cell from parent_cell's point of view
 *  D is the dimension of the triangulation
 *  delta is the protection constant
 *  marked_cells is the vector of all visited cells containing p in their circumscribed ball
 *  power_protection is true iff you are working with delta-power protection
 *
 *  OUT: true iff inserting p hasn't produced any violation so far
 */

bool is_violating_protection(Point_d& p, Delaunay_triangulation& t, Full_cell_handle c, Full_cell_handle parent_cell, int index, int D, FT delta, std::vector<Full_cell_handle>& marked_cells, bool power_protection, FT theta0)
{
  Euclidean_distance ed;
  std::vector<Point_d> vertices;
  if (!t.is_infinite(c))
    {
      // if the cell is finite, we look if the protection is violated
      for (auto v_it = c->vertices_begin(); v_it != c->vertices_end(); ++v_it)
        vertices.push_back((*v_it)->point());
      Sphere_d cs( vertices.begin(), vertices.end());
      Point_d center_cs = cs.center();
      FT r = sqrt(ed.transformed_distance(center_cs, vertices[0]));
      FT dist2 = ed.transformed_distance(center_cs, p);
      // if the new point is inside the protection ball of a non conflicting simplex
      if (!power_protection)
        if (dist2 >= r*r-_sfty && dist2 <= (r+delta)*(r+delta))
          return true;
      if (power_protection)
        if (dist2 >= r*r-_sfty && dist2 <= r*r+delta*delta) 
          return true;    
      // if the new point is inside the circumscribing ball : continue violation searching on neighbours
      //if (dist2 < r*r)
      //if (dist2 < (5*r+delta)*(5*r+delta))
      if (dist2 < r*r)
        {
          c->tds_data().mark_visited();
          marked_cells.push_back(c);
          for (int i = 0; i < D+1; ++i)
            {
              Full_cell_handle next_c = c->neighbor(i);
              if (next_c->tds_data().is_clear() &&
                  is_violating_protection(p, t, next_c, c, i, D, delta, marked_cells, power_protection, theta0))
                return true;
            }
        }
      // if the new point is outside the protection sphere
      else
        {
          // facet f is on the border of the conflict zone : check protection of simplex {p,f}
          // the new simplex is guaranteed to be finite
          vertices.clear(); vertices.push_back(p);
          for (int i = 0; i < D+1; ++i)
            if (i != index)
              vertices.push_back(parent_cell->vertex(i)->point());
          Delaunay_vertex vertex_to_check = t.infinite_vertex();
          for (auto vh_it = c->vertices_begin(); vh_it != c->vertices_end(); ++vh_it)
            if (!vertex_is_in_full_cell(*vh_it, parent_cell))
              {
                vertex_to_check = *vh_it; break;
              }
          if (new_cell_is_violated(t, vertices, vertex_to_check, parent_cell->vertex(index), delta, power_protection, theta0)) 
          //if (new_cell_is_violated(t, vertices, vertex_to_check->point(), delta)) 
            return true;            
        }
    } 
  else
    {
      // Inside of the convex hull is + side. Outside is - side.
      for (auto vh_it = c->vertices_begin(); vh_it != c->vertices_end(); ++vh_it)
        if (!t.is_infinite(*vh_it))
          vertices.push_back((*vh_it)->point());
      Delaunay_triangulation::Vertex_iterator v_it = t.vertices_begin();
      while (t.is_infinite(v_it) || vertex_is_in_full_cell(v_it, c))
        v_it++;
      Hyperplane_d facet_plane(vertices.begin(), vertices.end(), v_it->point(), CGAL::ON_POSITIVE_SIDE);
      //CGAL::Oriented_side outside = Oriented_side_d()(facet_plane, v_it->point());
      Vector_d orth_v = facet_plane.orthogonal_vector();
      std::vector<FT> coords;
      auto orth_i = orth_v.cartesian_begin(), p_i = p.cartesian_begin();
      for (; orth_i != orth_v.cartesian_end(); ++orth_i, ++p_i)
        coords.push_back((*p_i) - (*orth_i) * delta / sqrt(orth_v.squared_length()));
      Point_d p_delta = Point_d(coords);
      bool p_is_inside = !Has_on_positive_side_d()(facet_plane, p) && (Oriented_side_d()(facet_plane, p) != CGAL::ZERO);
      bool p_delta_is_inside = !Has_on_positive_side_d()(facet_plane, p_delta);

      // If we work with power protection, we just ignore any conflicts
      if (!power_protection && !p_is_inside && p_delta_is_inside)
        return true;
      //if the cell is infinite we look at the neighbours regardless
      if (p_is_inside)
        {
          c->tds_data().mark_visited();
          marked_cells.push_back(c);    
          for (int i = 0; i < D+1; ++i)
            {
              Full_cell_handle next_c = c->neighbor(i);
              if (next_c->tds_data().is_clear() &&
                  is_violating_protection(p, t, next_c, c, i, D, delta, marked_cells, power_protection, theta0))
                return true;
            }
        }
      else
        {
          // facet f is on the border of the conflict zone : check protection of simplex {p,f}
          // the new simplex is finite if the parent cell is finite
          vertices.clear(); vertices.push_back(p);
          for (int i = 0; i < D+1; ++i)
            if (i != index)
              if (!t.is_infinite(parent_cell->vertex(i)))
                vertices.push_back(parent_cell->vertex(i)->point());
          Delaunay_vertex vertex_to_check = t.infinite_vertex();
          for (auto vh_it = c->vertices_begin(); vh_it != c->vertices_end(); ++vh_it)
            if (!vertex_is_in_full_cell(*vh_it, parent_cell))
              {
                vertex_to_check = *vh_it; break;
              }
          if (new_cell_is_violated(t, vertices, vertex_to_check, parent_cell->vertex(index), delta, power_protection, theta0)) 
          //if (new_cell_is_violated(t, vertices, vertex_to_check->point(), delta)) 
            return true;
        }
    }
  //c->tds_data().clear_visited();
  //marked_cells.pop_back();
  return false;
}

/** Checks if inserting the point p in t will make conflicts
 *
 *  p is the point to insert
 *  t is the current triangulation
 *  D is the dimension of triangulation
 *  delta is the protection constant
 *  power_protection is true iff you are working with delta-power protection
 *  OUT: true iff inserting p produces a violation of delta-protection.
 */

bool is_violating_protection(Point_d& p, Delaunay_triangulation& t, int D, FT delta, bool power_protection, FT theta0)
{
  Euclidean_distance ed;
  Delaunay_triangulation::Vertex_handle v;
  Delaunay_triangulation::Face f(t.current_dimension()); 
  Delaunay_triangulation::Facet ft; 
  Delaunay_triangulation::Full_cell_handle c; 
  Delaunay_triangulation::Locate_type lt;
  std::vector<Full_cell_handle> marked_cells;
  c = t.locate(p, lt, f, ft, v);
  bool violation_existing_cells = is_violating_protection(p, t, c, c, 0, D, delta, marked_cells, power_protection, theta0);
  for (Full_cell_handle fc : marked_cells)
    fc->tds_data().clear();
  return violation_existing_cells;
}

//////////////////////////////////////////////////////////////////////
// INITIALIZATION
//////////////////////////////////////////////////////////////////////

void initialize(Search_Tree& W, Delaunay& t, int D, int width, bool torus)
{
  if (!torus)
    std::cout << "Non-toric case is not supported\n";
  else
    {
      if (D == 2)
        {
          FT stepx = 2.0/width;
          FT stepy = sqrt(3)/width;
          for (int i = 0; i < width; ++i)
            for (int j = 0; j < floor(2*width/sqrt(3)); ++j)
              {
                insert_delaunay_landmark_with_copies(Point_d(step*i,))
              }
        }
      else (D == 3)
        {
          
        }
      else std::cout << "T^d with d>3 not supported";
    }
}
  
///////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////
//!!!!!!!!!!!!! THE INTERFACE FOR LANDMARK CHOICE IS BELOW !!!!!!!!!!//
///////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////

///////////////////////////////////////////////////////////////////////
// LANDMARK CHOICE PROCEDURE AS IN PAPER
///////////////////////////////////////////////////////////////////////

/** Procedure to compute a maximal protected subset from a point cloud. All OUTs should be empty at call.
 *
 *  IN:  W is the initial point cloud having type Epick_d<Dynamic_dimension_tag>::Point_d
 *  IN:  nbP is the size of W
 *  OUT: landmarks is the output vector for the points
 *  OUT: landmarks_ind is the output vector for the indices of the selected points in W
 *  IN:  delta is the constant of protection
 *  OUT: full_cells is the output vector of the simplices in the final Delaunay triangulation
 *  IN:  torus is true iff you are working on a flat torus [-1,1]^d
 */ 

template<class Search_Tree>
void protected_delaunay_refinement(Search_Tree& W, int nbP, Point_Vector& landmarks, FT delta, bool torus, bool power_protection, FT theta0)
{
  bool return_ = true;
  unsigned D = W[0].size();
  Torus_distance td;
  Euclidean_distance ed;
  Delaunay_triangulation t(D);
  CGAL::Random rand;
  int landmark_count = 0;
  //std::list<int> index_list;
  //      shuffle the list of indexes (via a vector)
  // {
  //   std::vector<int> temp_vector;
  //   for (int i = 0; i < nbP; ++i)
  //     temp_vector.push_back(i);
  //   unsigned seed = std::chrono::system_clock::now().time_since_epoch().count();
  //   std::shuffle(temp_vector.begin(), temp_vector.end(), std::default_random_engine(seed));
  //   //CGAL::spatial_sort(temp_vector.begin(), temp_vector.end());
  //   for (std::vector<int>::iterator it = temp_vector.begin(); it != temp_vector.end(); ++it)
  //     index_list.push_front(*it);
  // }
  if (torus)
  if (D == 2)
    // \T^2
    {
      for (int i = 0; i < 4; ++i)
        for (int j = 0; j < 2; ++j)
          {
            W[index_list.front()] = Point_d(std::vector<FT>{i*0.5, j*1.0});
            insert_delaunay_landmark_with_copies(W, index_list.front(), landmarks_ind, t, landmark_count, torus);
            index_list.pop_front();
            W[index_list.front()] = Point_d(std::vector<FT>{0.25+i*0.5, 0.5+j});
            insert_delaunay_landmark_with_copies(W, index_list.front(), landmarks_ind, t, landmark_count, torus);
            index_list.pop_front();
          }
    }
  else if (D == 3)
    {
      
    }
    //std::cout << "No torus starter available for dim>2\n";
  std::list<int>::iterator list_it = index_list.begin();
  while (list_it != index_list.end())
    {
      if (!is_violating_protection(W[*list_it], t, D, delta, power_protection, theta0))
        {
          // If no conflicts then insert in every copy of T^3

          insert_delaunay_landmark_with_copies(W, *list_it, landmarks_ind, t, landmark_count, torus);
          if (return_)
            {
              index_list.erase(list_it);
              list_it = index_list.begin();
            }
          else
            index_list.erase(list_it++);
          /*
          // PIECE OF CODE FOR DEBUGGING PURPOSES
          
          Delaunay_vertex inserted_v = insert_delaunay_landmark_with_copies(W, *list_it, landmarks_ind, t, landmark_count);
          if (triangulation_is_protected(t, delta))
            {
              index_list.erase(list_it);
              list_it = index_list.begin();
            }
          else
            { //THAT'S WHERE SOMETHING'S WRONG
              t.remove(inserted_v);
              landmarks_ind.pop_back();
              landmark_count--;
              write_delaunay_mesh(t, W[*list_it], is2d);
              is_violating_protection(W[*list_it], t_old, D, delta); //Called for encore
            }
          */
          //std::cout << "index_list_size() = " << index_list.size() << "\n";
        }
      else
        {
          list_it++;
          //std::cout << "!!!!!WARNING!!!!! A POINT HAS BEEN OMITTED!!!\n";
        }
      //if (list_it != index_list.end())
      //  write_delaunay_mesh(t, W[*list_it], is2d);
    }
  fill_landmarks(W, landmarks, landmarks_ind, torus);
  fill_full_cell_vector(t, full_cells);
  /*
  if (triangulation_is_protected(t, delta))
    std::cout << "Triangulation is ok\n";
  else
    {
      std::cout << "Triangulation is BAD!! T_T しくしく!\n";
    }
  */
  //write_delaunay_mesh(t, W[0], is2d);
  //std::cout << t << std::endl;
}

#endif