summaryrefslogtreecommitdiff
path: root/src/Witness_complex/example/relaxed_delaunay.cpp
blob: b01904461c7110cc6e79386e56cfbdd3d1ba57df (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
/*    This file is part of the Gudhi Library. The Gudhi library
 *    (Geometric Understanding in Higher Dimensions) is a generic C++
 *    library for computational topology.
 *
 *    Author(s):       Siargey Kachanovich
 *
 *    Copyright (C) 2016  INRIA Sophia Antipolis-Méditerranée (France)
 *
 *    This program is free software: you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation, either version 3 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <gudhi/Simplex_tree.h>
#include <gudhi/Relaxed_witness_complex.h>
#include <gudhi/Dim_lists.h>
#include <gudhi/reader_utils.h>
#include <gudhi/Persistent_cohomology.h>
#include "Landmark_choice_random_knn.h"
#include "Landmark_choice_sparsification.h"

#include <iostream>
#include <fstream>
#include <ctime>
#include <utility>
#include <algorithm>
#include <set>
#include <queue>
#include <iterator>
#include <string>

#include <boost/tuple/tuple.hpp>
#include <boost/iterator/zip_iterator.hpp>
#include <boost/iterator/counting_iterator.hpp>
#include <boost/range/iterator_range.hpp>

#include <CGAL/Epick_d.h>
#include <CGAL/Delaunay_triangulation.h>
//#include <CGAL/Sphere_d.h>

#include "generators.h"
#include "output.h"

using namespace Gudhi;
using namespace Gudhi::witness_complex;
using namespace Gudhi::persistent_cohomology;

typedef CGAL::Epick_d<CGAL::Dynamic_dimension_tag> K;
typedef K::Point_d Point_d;
typedef K::Sphere_d Sphere_d;
typedef CGAL::Delaunay_triangulation<K> Delaunay_triangulation;

typedef std::vector<Point_d> Point_Vector;
typedef Relaxed_witness_complex< Simplex_tree<> > RelaxedWitnessComplex;
typedef Simplex_tree<>::Simplex_handle Simplex_handle;



/**
 * \brief Customized version of read_points
 * which takes into account a possible nbP first line
 *
 */
inline void
read_points_cust(std::string file_name, std::vector< std::vector< double > > & points) {
  std::ifstream in_file(file_name.c_str(), std::ios::in);
  if (!in_file.is_open()) {
    std::cerr << "Unable to open file " << file_name << std::endl;
    return;
  }
  std::string line;
  double x;
  while (getline(in_file, line)) {
    std::vector< double > point;
    std::istringstream iss(line);
    while (iss >> x) {
      point.push_back(x);
    }
    if (point.size() != 1)
      points.push_back(point);
  }
  in_file.close();
}

int main (int argc, char * const argv[])
{
  if (argc != 4) {
    std::cerr << "Usage: " << argv[0]
              << " 1 file_name alpha limD\n";
    return 0;
  }
  std::string file_name = argv[1];
  double alpha2  = atof(argv[2]);
  int limD = atoi(argv[3]);
  
  // Read points
  Point_Vector point_vector;
  read_points_cust(file_name, point_vector);
  generate_points_random_box(point_vector, 200, 2);
  write_points(file_name, point_vector);
  
  std::cout << "The file contains " << point_vector.size() << " points.\n";
  std::cout << "Ambient dimension is " << point_vector[0].size() << ".\n";

  // 1. Compute Delaunay centers
  Delaunay_triangulation delaunay(point_vector[0].size());
  delaunay.insert(point_vector.begin(), point_vector.end());
  Point_Vector del_centers;
  for (auto f_it = delaunay.full_cells_begin(); f_it != delaunay.full_cells_end(); ++f_it) {
    if (delaunay.is_infinite(f_it))
      continue;
    Point_Vector vertices;
    for (auto v_it = f_it->vertices_begin(); v_it != f_it->vertices_end(); ++v_it)
      vertices.push_back((*v_it)->point());
    Sphere_d sphere(vertices.begin(), vertices.end());
    del_centers.push_back(sphere.center());
  }
  std::cout << "Delaunay center count: " << del_centers.size() << ".\n";

  // 2. Build Relaxed Witness Complex
  std::vector<std::vector<int>> knn;
  std::vector<std::vector<double>> distances;
  Gudhi::witness_complex::build_distance_matrix(del_centers,   // aka witnesses
                                                point_vector,  // aka landmarks
                                                alpha2,
                                                limD,
                                                knn,
                                                distances);
  
  write_wl("wl_distances.txt", distances);
  Simplex_tree<> simplex_tree;
  Gudhi::witness_complex::Relaxed_witness_complex<Simplex_tree<>> rwc(distances,
                                                                      knn,
                                                                      simplex_tree,
                                                                      point_vector.size(),
                                                                      alpha2,
                                                                      limD);
  std::vector<int> dim_simplices(limD+1);
  for (auto sh: simplex_tree.complex_simplex_range()) {
    dim_simplices[simplex_tree.dimension(sh)]++;
  }
  for (unsigned i =0; i != dim_simplices.size(); ++i)
    std::cout << "dim[" << i << "]: " << dim_simplices[i] << " simplices.\n";

  std::vector<int> landmarks_ind;
  for (unsigned i = 0; i < point_vector.size(); ++i)
    landmarks_ind.push_back(i);
  write_witness_mesh(point_vector, landmarks_ind, simplex_tree, simplex_tree.complex_simplex_range(), true, true, "relaxed_delaunay.mesh");
  
  // 3. Check if the thing is Relaxed Delaunay
  for (auto sh: simplex_tree.complex_simplex_range()) {
    Point_Vector vertices;
    for (auto v: simplex_tree.simplex_vertex_range(sh))
      vertices.push_back(point_vector[v]);
    Sphere_d sphere(vertices.begin(), vertices.end());
    Point_d center = sphere.center();
    double r2 = sphere.squared_radius();
    typename K::Squared_distance_d dist2;
    std::vector<int> v_inds;
    for (auto v: simplex_tree.simplex_vertex_range(sh))
      v_inds.push_back(v);
    auto range_begin = std::begin(v_inds);
    auto range_end = std::end(v_inds);
    if (simplex_tree.dimension(sh) == (int)point_vector[0].size())
    for (auto v: simplex_tree.complex_vertex_range())
      if (std::find(range_begin, range_end, v) == range_end) {
        if (dist2(point_vector[v], center) < r2 - alpha2)
          std::cout << "WARNING! The vertex " << point_vector[v] << " is inside the (r2-alpha2)-ball (" << center << ", " << r2 << ") distance is " << dist2(point_vector[v], center) << "\n";
      }
  }
}