summaryrefslogtreecommitdiff
path: root/src/Witness_complex/example/witness_complex_protected_delaunay.cpp
blob: 77a167a5be28d9926024f3d4fd2b24c11c76eef5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
/*    This file is part of the Gudhi Library. The Gudhi library
 *    (Geometric Understanding in Higher Dimensions) is a generic C++
 *    library for computational topology.
 *
 *    Author(s):       Siargey Kachanovich
 *
 *    Copyright (C) 2015  INRIA Sophia Antipolis-Méditerranée (France)
 *
 *    This program is free software: you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation, either version 3 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <iostream>
#include <fstream>
#include <ctime>
#include <utility>
#include <algorithm>
#include <set>
#include <iterator>
#include <chrono>

#include <sys/types.h>
#include <sys/stat.h>
//#include <stdlib.h>

//#include "gudhi/graph_simplicial_complex.h"
#include "gudhi/Witness_complex.h"
#include "gudhi/reader_utils.h"
#include "Torus_distance.h" 

#include <CGAL/Cartesian_d.h>
#include <CGAL/Search_traits.h>
#include <CGAL/Search_traits_adapter.h>
#include <CGAL/property_map.h>
#include <CGAL/Epick_d.h>
#include <CGAL/Orthogonal_k_neighbor_search.h>
#include <CGAL/Kd_tree.h>
#include <CGAL/Euclidean_distance.h>
#include <CGAL/Kernel_d/Sphere_d.h>

#include <CGAL/Kernel_d/Vector_d.h>
#include <CGAL/point_generators_d.h>
#include <CGAL/constructions_d.h>
#include <CGAL/Fuzzy_sphere.h>
#include <CGAL/Random.h>
#include <CGAL/Delaunay_triangulation.h>


#include <boost/tuple/tuple.hpp>
#include <boost/iterator/zip_iterator.hpp>
#include <boost/iterator/counting_iterator.hpp>
#include <boost/range/iterator_range.hpp>

using namespace Gudhi;
//using namespace boost::filesystem;

typedef CGAL::Epick_d<CGAL::Dynamic_dimension_tag> K;
typedef K::Point_d Point_d;
//typedef CGAL::Cartesian_d<double> K;
//typedef CGAL::Point_d<K> Point_d;
typedef K::FT FT;
typedef CGAL::Search_traits<
  FT, Point_d,
  typename K::Cartesian_const_iterator_d,
  typename K::Construct_cartesian_const_iterator_d> Traits_base;
typedef CGAL::Euclidean_distance<Traits_base> Euclidean_distance;


typedef std::vector< Vertex_handle > typeVectorVertex;

//typedef std::pair<typeVectorVertex, Filtration_value> typeSimplex;
//typedef std::pair< Simplex_tree<>::Simplex_handle, bool > typePairSimplexBool;

typedef CGAL::Search_traits_adapter<
  std::ptrdiff_t, Point_d*, Traits_base> STraits;
//typedef K TreeTraits;
//typedef CGAL::Distance_adapter<std::ptrdiff_t,Point_d*,Euclidean_distance > Euclidean_adapter;
//typedef CGAL::Kd_tree<STraits> Kd_tree;
typedef CGAL::Orthogonal_k_neighbor_search<STraits, CGAL::Distance_adapter<std::ptrdiff_t,Point_d*,Euclidean_distance>> K_neighbor_search;
typedef K_neighbor_search::Tree Tree;
typedef K_neighbor_search::Distance Distance;
typedef K_neighbor_search::iterator KNS_iterator;
typedef K_neighbor_search::iterator KNS_range;
typedef boost::container::flat_map<int, int> Point_etiquette_map;
typedef CGAL::Kd_tree<STraits> Tree2;

typedef CGAL::Fuzzy_sphere<STraits> Fuzzy_sphere;

typedef std::vector<Point_d> Point_Vector;

//typedef K::Equal_d Equal_d;
//typedef CGAL::Random_points_in_cube_d<CGAL::Point_d<CGAL::Cartesian_d<FT> > > Random_cube_iterator;
typedef CGAL::Random_points_in_cube_d<Point_d> Random_cube_iterator;
typedef CGAL::Random_points_in_ball_d<Point_d> Random_point_iterator;

typedef CGAL::Delaunay_triangulation<K> Delaunay_triangulation;
typedef Delaunay_triangulation::Facet Facet;
typedef CGAL::Sphere_d<K> Sphere_d;

bool toric=false;


/**
 * \brief Customized version of read_points
 * which takes into account a possible nbP first line
 *
 */
inline void
read_points_cust ( std::string file_name , Point_Vector & points)
{  
  std::ifstream in_file (file_name.c_str(),std::ios::in);
  if(!in_file.is_open())
    {
      std::cerr << "Unable to open file " << file_name << std::endl;
      return;
    }
  std::string line;
  double x;
  while( getline ( in_file , line ) )
    {
      std::vector< double > point;
      std::istringstream iss( line );
      while(iss >> x) { point.push_back(x); }
      Point_d p(point.begin(), point.end());
      if (point.size() != 1)
        points.push_back(p);
    }
  in_file.close();
}

void generate_points_grid(Point_Vector& W, int width, int D)
{
  int nb_points = 1;
  for (int i = 0; i < D; ++i)
    nb_points *= width;
  for (int i = 0; i < nb_points; ++i)
    {
      std::vector<double> point;
      int cell_i = i;
      for (int l = 0; l < D; ++l)
        {
          point.push_back(0.01*(cell_i%width));
          cell_i /= width;
        }
      W.push_back(point);
    }
}

void generate_points_random_box(Point_Vector& W, int nbP, int dim)
{
  /*
  Random_cube_iterator rp(dim, 1);
  for (int i = 0; i < nbP; i++)
    {
      std::vector<double> point;
      for (auto it = rp->cartesian_begin(); it != rp->cartesian_end(); ++it)
        point.push_back(*it);
      W.push_back(Point_d(point));
      rp++;
    }
  */
  Random_cube_iterator rp(dim, 1.0);
  for (int i = 0; i < nbP; i++)
    {
      W.push_back(*rp++);
    }
}


void write_wl( std::string file_name, std::vector< std::vector <int> > & WL)
{
  std::ofstream ofs (file_name, std::ofstream::out);
  for (auto w : WL)
    {
      for (auto l: w)
        ofs << l << " ";
      ofs << "\n";
    }
  ofs.close();
}


void write_points( std::string file_name, std::vector< Point_d > & points)
{
  std::ofstream ofs (file_name, std::ofstream::out);
  for (auto w : points)
    {
      for (auto it = w.cartesian_begin(); it != w.cartesian_end(); ++it)
        ofs << *it << " ";
      ofs << "\n";
    }
  ofs.close();
}

void write_edges(std::string file_name, Witness_complex<>& witness_complex, Point_Vector& landmarks)
{
  std::ofstream ofs (file_name, std::ofstream::out);
  for (auto u: witness_complex.complex_vertex_range())
    for (auto v: witness_complex.complex_vertex_range())
      {
        typeVectorVertex edge = {u,v};
        if (u < v && witness_complex.find(edge) != witness_complex.null_simplex())   
          {
            for (auto it = landmarks[u].cartesian_begin(); it != landmarks[u].cartesian_end(); ++it)
              ofs << *it << " ";
            ofs << "\n";
            for (auto it = landmarks[v].cartesian_begin(); it != landmarks[v].cartesian_end(); ++it)
              ofs << *it << " ";
            ofs << "\n\n\n";
          }
      }
  ofs.close();
}


/** Function that chooses landmarks from W and place it in the kd-tree L.
 *  Note: nbL hould be removed if the code moves to Witness_complex
 */
void landmark_choice(Point_Vector &W, int nbP, int nbL, Point_Vector& landmarks, std::vector<int>& landmarks_ind)
{
  std::cout << "Enter landmark choice to kd tree\n";
  int chosen_landmark;
  Point_d* p;
  CGAL::Random rand;
  for (int i = 0; i < nbL; i++)
    {
      //      while (!res.second)
      //  {
      do chosen_landmark = rand.get_int(0,nbP);
      while (std::count(landmarks_ind.begin(),landmarks_ind.end(),chosen_landmark)!=0);
      //rand++;
      //std::cout << "Chose " << chosen_landmark << std::endl;
      p = &W[chosen_landmark];
      //L_i.emplace(chosen_landmark,i);
      //  }
      landmarks.push_back(*p);
      landmarks_ind.push_back(chosen_landmark);
      //std::cout << "Added landmark " << chosen_landmark << std::endl;
    }
 }

void insert_delaunay_landmark_with_copies(Point_Vector& W, int chosen_landmark, std::vector<int>& landmarks_ind, Delaunay_triangulation& delaunay, int& landmark_count)
{
  int D = W[0].size();
  int nb_cells = pow(3, D);
  for (int i = 0; i < nb_cells; ++i)
    {
      std::vector<FT> point;
      int cell_i = i;
      for (int l = 0; l < D; ++l)
        {
                point.push_back(W[chosen_landmark][l] + 2.0*(cell_i%3-1));
                cell_i /= 3;
        }
      delaunay.insert(point);
    }
  landmarks_ind.push_back(chosen_landmark);
  landmark_count++;
}




////////////////////////////////////////////////////////////////////////
// OLD CODE VVVVVVVV
////////////////////////////////////////////////////////////////////////


/*
bool is_violating_protection(Point_d& p, Delaunay_triangulation& t, int D, FT delta)
{
  Euclidean_distance ed;
  Delaunay_triangulation::Vertex_handle v;
  Delaunay_triangulation::Face f(t.current_dimension()); 
  Delaunay_triangulation::Facet ft; 
  Delaunay_triangulation::Full_cell_handle c; 
  Delaunay_triangulation::Locate_type lt;
  c = t.locate(p, lt, f, ft, v);
  for (auto fc_it = t.full_cells_begin(); fc_it != t.full_cells_end(); ++fc_it)
    if (!t.is_infinite(fc_it))
      {
        std::vector<Point_d> vertices;
        for (auto v_it = fc_it->vertices_begin(); v_it != fc_it->vertices_end(); ++v_it)
          vertices.push_back((*v_it)->point());
        Sphere_d cs(D, vertices.begin(), vertices.end());
        Point_d center_cs = cs.center();
        FT r = sqrt(ed.transformed_distance(center_cs, fc_it->vertex(1)->point()));
        FT dist2 = ed.transformed_distance(center_cs, p);
        //if the new point is inside the protection ball of a non conflicting simplex
        if (dist2 >= r*r && dist2 <= (r+delta)*(r+delta)) 
          return true;
      }
  return false;
}

bool triangulation_is_protected(Delaunay_triangulation& t, FT delta)
{
  Euclidean_distance ed;
  int D = t.current_dimension();
  for (auto fc_it = t.full_cells_begin(); fc_it != t.full_cells_end(); ++fc_it)
    if (!t.is_infinite(fc_it))
      for (auto v_it = t.vertices_begin(); v_it != t.vertices_end(); ++v_it)
        {
          //check if vertex belongs to the face
          bool belongs = false;
          for (auto fc_v_it = fc_it->vertices_begin(); fc_v_it != fc_it->vertices_end(); ++fc_v_it)
            if (v_it == *fc_v_it)
              {
                belongs = true;
                break;
              }
          if (!belongs)
            {
              std::vector<Point_d> vertices;
              for (auto fc_v_it = fc_it->vertices_begin(); fc_v_it != fc_it->vertices_end(); ++fc_v_it)
                vertices.push_back((*fc_v_it)->point());
              Sphere_d cs(D, vertices.begin(), vertices.end());
              Point_d center_cs = cs.center();
              FT r = sqrt(ed.transformed_distance(center_cs, fc_it->vertex(1)->point()));
              FT dist2 = ed.transformed_distance(center_cs, v_it->point());
              //if the new point is inside the protection ball of a non conflicting simplex
              if (dist2 <= (r+delta)*(r+delta)) 
                return false;
            }
        }
  return true;
}

void fill_landmark_copies(Point_Vector& W, Point_Vector& landmarks, std::vector<int>& landmarks_ind)
{
  int D = W[0].size();
  int nb_cells = pow(3, D);
  int nbL = landmarks_ind.size();
  // Fill landmarks
  for (int i = 0; i < nb_cells-1; ++i)
    for (int j = 0; j < nbL; ++j)
      {
        int cell_i = i;
        Point_d point;
        for (int l = 0; l < D; ++l)
          {
            point.push_back(W[landmarks_ind[j]][l] + 2.0*(cell_i-1));
            cell_i /= 3;
          }
        landmarks.push_back(point);
      }
}

void landmark_choice_by_delaunay(Point_Vector& W, int nbP, int nbL, Point_Vector& landmarks, std::vector<int>& landmarks_ind, FT delta)
{
  int D = W[0].size();
  Delaunay_triangulation t(D);
  CGAL::Random rand;
  int chosen_landmark;
  int landmark_count = 0;
  for (int i = 0; i <= D+1; ++i)
    {
      do chosen_landmark = rand.get_int(0,nbP);
      while (std::count(landmarks_ind.begin(),landmarks_ind.end(),chosen_landmark)!=0);
      insert_delaunay_landmark_with_copies(W, chosen_landmark, landmarks_ind, t, landmark_count);
    }
  while (landmark_count < nbL)
    {      
      do chosen_landmark = rand.get_int(0,nbP);
      while (std::count(landmarks_ind.begin(),landmarks_ind.end(),chosen_landmark)!=0);      
      // If no conflicts then insert in every copy of T^3
      if (!is_violating_protection(W[chosen_landmark], t, D, delta))
        insert_delaunay_landmark_with_copies(W, chosen_landmark, landmarks_ind, t, landmark_count);
    }
  fill_landmark_copies(W, landmarks, landmarks_ind);
}


void landmark_choice_protected_delaunay(Point_Vector& W, int nbP, Point_Vector& landmarks, std::vector<int>& landmarks_ind, FT delta)
{
  int D = W[0].size();
  Torus_distance td;
  Euclidean_distance ed;
  Delaunay_triangulation t(D);
  CGAL::Random rand;
  int landmark_count = 0;
  std::list<int> index_list;
  //      shuffle the list of indexes (via a vector)
  {
    std::vector<int> temp_vector;
    for (int i = 0; i < nbP; ++i)
      temp_vector.push_back(i);
    unsigned seed = std::chrono::system_clock::now().time_since_epoch().count();
    std::shuffle(temp_vector.begin(), temp_vector.end(), std::default_random_engine(seed));
    for (std::vector<int>::iterator it = temp_vector.begin(); it != temp_vector.end(); ++it)
      index_list.push_front(*it);
  }
  //      add the first D+1 vertices to form one non-empty cell 
  for (int i = 0; i <= D+1; ++i)
    {
      insert_delaunay_landmark_with_copies(W, index_list.front(), landmarks_ind, t, landmark_count);
      index_list.pop_front();
    }
  //      add other vertices if they don't violate protection
  std::list<int>::iterator list_it = index_list.begin();
  while (list_it != index_list.end())
    if (!is_violating_protection(W[*list_it], t, D, delta))
      {
          // If no conflicts then insert in every copy of T^3      
          insert_delaunay_landmark_with_copies(W, *list_it, landmarks_ind, t, landmark_count);
          index_list.erase(list_it);
          list_it = index_list.begin();
        }
    else
      list_it++;
  fill_landmark_copies(W, landmarks, landmarks_ind);
}


int landmark_perturbation(Point_Vector &W, int nbL, Point_Vector& landmarks, std::vector<int>& landmarks_ind)
{
  //******************** Preface: origin point
  int D = W[0].size();
  std::vector<FT> orig_vector;
  for (int i=0; i<D; i++)
    orig_vector.push_back(0);
  Point_d origin(orig_vector);

  //******************** Constructing a WL matrix
  int nbP = W.size();
  Euclidean_distance ed;
  FT lambda = ed.transformed_distance(landmarks[0],landmarks[1]);
  std::vector<Point_d> landmarks_ext;
  int nb_cells = 1;
  for (int i = 0; i < D; ++i)
    nb_cells *= 3;
  for (int i = 0; i < nb_cells; ++i)
      for (int k = 0; k < nbL; ++k)
        {
          std::vector<double> point;
          int cell_i = i;
          for (int l = 0; l < D; ++l)
            {
              point.push_back(landmarks[k][l] + 2.0*((cell_i%3)-1.0));
              cell_i /= 3;
            }
          landmarks_ext.push_back(point);
        }
  write_points("landmarks/initial_landmarks",landmarks_ext);
  STraits traits(&(landmarks_ext[0]));
  std::vector< std::vector <int> > WL(nbP);

  //********************** Neighbor search in a Kd tree
  Tree L(boost::counting_iterator<std::ptrdiff_t>(0),
         boost::counting_iterator<std::ptrdiff_t>(nb_cells*nbL),
         typename Tree::Splitter(),
         traits);
  std::cout << "Enter (D+1) nearest landmarks\n";
  for (int i = 0; i < nbP; i++)
    {
      Point_d& w = W[i];
      ////Search D+1 nearest neighbours from the tree of landmarks L
      K_neighbor_search search(L, w, D+1, FT(0), true,
                               CGAL::Distance_adapter<std::ptrdiff_t,Point_d*,Euclidean_distance>(&(landmarks_ext[0])) );
      for(K_neighbor_search::iterator it = search.begin(); it != search.end(); ++it)
        {
          if (std::find(WL[i].begin(), WL[i].end(), (it->first)%nbL) == WL[i].end())
            WL[i].push_back((it->first)%nbL);
        }
      if (i == landmarks_ind[WL[i][0]])
        {
          FT dist = ed.transformed_distance(W[i], landmarks[WL[i][1]]);
          if (dist < lambda)
            lambda = dist;
        }
    }
  std::string out_file = "wl_result";
  write_wl(out_file,WL);
  
  //******************** Constructng a witness complex
  std::cout << "Entered witness complex construction\n";
  Witness_complex<> witnessComplex;
  witnessComplex.setNbL(nbL);
  witnessComplex.witness_complex(WL);

  //******************** Making a set of bad link landmarks
  std::cout << "Entered bad links\n";
  std::set< int > perturbL;
  int count_badlinks = 0;
  //std::cout << "Bad links around ";
  std::vector< int > count_bad(D);
  std::vector< int > count_good(D);
  for (auto u: witnessComplex.complex_vertex_range())
    {
       if (!witnessComplex.has_good_link(u, count_bad, count_good))
         {
           count_badlinks++;
           Point_d& l = landmarks[u];
           Fuzzy_sphere fs(l, sqrt(lambda)*3, 0, traits);
           std::vector<int> curr_perturb;
           L.search(std::insert_iterator<std::vector<int>>(curr_perturb,curr_perturb.begin()),fs);
           for (int i: curr_perturb)
             perturbL.insert(i%nbL);
       }
    }
  for (unsigned int i = 0; i != count_good.size(); i++)
    if (count_good[i] != 0)
      std::cout << "count_good[" << i << "] = " << count_good[i] << std::endl;
  for (unsigned int i = 0; i != count_bad.size(); i++)
    if (count_bad[i] != 0)
      std::cout << "count_bad[" << i << "] = " << count_bad[i] << std::endl;
  std::cout << "\nBad links total: " << count_badlinks << " Points to perturb: " << perturbL.size() << std::endl;
  
  //*********************** Perturb bad link landmarks  
  for (auto u: perturbL)
    {
      Random_point_iterator rp(D,sqrt(lambda)/8);
      std::vector<FT> point;
      for (int i = 0; i < D; i++)
        {
          while (K().squared_distance_d_object()(*rp,origin) < lambda/256)
            rp++;
          FT coord = landmarks[u][i] + (*rp)[i];
          if (coord > 1)
            point.push_back(coord-1);
          else if (coord < -1)
            point.push_back(coord+1);
          else
            point.push_back(coord);
        }
      landmarks[u] = Point_d(point);
    }
  std::cout << "lambda=" << lambda << std::endl;
  char buffer[100];
  int i = sprintf(buffer,"stree_result.txt");
  
  if (i >= 0)
    {
      std::string out_file = (std::string)buffer;
      std::ofstream ofs (out_file, std::ofstream::out);
      witnessComplex.st_to_file(ofs);
      ofs.close();
    }
  write_edges("landmarks/edges", witnessComplex, landmarks);
  return count_badlinks;
}


int main (int argc, char * const argv[])
{
  if (argc != 5)
    {
      std::cerr << "Usage: " << argv[0]
                << " nbP nbL dim delta\n";
      return 0;
    }
  int nbP       = atoi(argv[1]);
  int nbL       = atoi(argv[2]);
  int dim       = atoi(argv[3]);
  FT delta      = atof(argv[4]);
  
  std::cout << "Let the carnage begin!\n";
  Point_Vector point_vector;
  generate_points_random_box(point_vector, nbP, dim);
  Point_Vector L;
  std::vector<int> chosen_landmarks;
  bool ok=false;
  while (!ok)
    {
      ok = true;
      L = {};
      chosen_landmarks = {};
      //landmark_choice_by_delaunay(point_vector, nbP, nbL, L, chosen_landmarks, delta);
      landmark_choice_protected_delaunay(point_vector, nbP, L, chosen_landmarks, delta);
      nbL = chosen_landmarks.size();
      std::cout << "Number of landmarks is " << nbL << std::endl;
      //int width = (int)pow(nbL, 1.0/dim); landmark_choice_bcc(point_vector, nbP, width, L, chosen_landmarks);
      for (auto i: chosen_landmarks)
        {
          ok = ok && (std::count(chosen_landmarks.begin(),chosen_landmarks.end(),i) == 1);
          if (!ok) break;
        }
      
    }
  int bl = nbL, curr_min = bl;
  write_points("landmarks/initial_pointset",point_vector);
  //write_points("landmarks/initial_landmarks",L);
  //for (int i = 0; i < 1; i++)
  for (int i = 0; bl > 0; i++)
    {
      std::cout << "========== Start iteration " << i << "== curr_min(" << curr_min << ")========\n";
      bl=landmark_perturbation(point_vector, nbL, L, chosen_landmarks);
      if (bl < curr_min)
        curr_min=bl;
      write_points("landmarks/landmarks0",L);
    }
  
}
*/