summaryrefslogtreecommitdiff
path: root/src/Witness_complex/include/gudhi/Witness_complex1.h
blob: f75c3e66024839a347d68ec904acb93ff07db002 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
/*    This file is part of the Gudhi Library. The Gudhi library
 *    (Geometric Understanding in Higher Dimensions) is a generic C++
 *    library for computational topology.
 *
 *    Author(s):       Siargey Kachanovich
 *
 *    Copyright (C) 2015  INRIA Sophia Antipolis-Méditerranée (France)
 *
 *    This program is free software: you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation, either version 3 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#ifndef GUDHI_WITNESS_COMPLEX_H_
#define GUDHI_WITNESS_COMPLEX_H_

#include <boost/container/flat_map.hpp>
#include <boost/iterator/transform_iterator.hpp>
#include <algorithm>
#include <utility>
#include "gudhi/reader_utils.h"
#include "gudhi/distance_functions.h"
#include "gudhi/Simplex_tree.h"
#include <vector>
#include <list>
#include <limits>
#include <math.h>

#include <iostream>

namespace Gudhi {

  /*
template<typename FiltrationValue = double,
         typename SimplexKey      = int,
         typename VertexHandle    = int>
class Simplex_tree;
  */  

    /*
    typedef int Witness_id;
typedef int Landmark_id;
typedef int Simplex_handle; //index in vector complex_
    */

template<typename FiltrationValue = double,
         typename SimplexKey      = int,
         typename VertexHandle    = int>
class Witness_complex: public Simplex_tree<> {
    //class Witness_complex: public Simplex_tree<FiltrationValue, SimplexKey, VertexHandle> {
    //class Witness_complex {
private:

  /*
  template < typename Witness_id = int,
             typename Landmark_id = int,
             typename Simplex_handle = Simplex_handle >
  struct Active_witness {
    Witness_id witness_id;
    Landmark_id landmark_id;
    Simplex_handle simplex_handle;
  };
  */
      
struct Active_witness {
    int witness_id;
    int landmark_id;
    Simplex_handle simplex_handle;

  Active_witness(int witness_id_, int landmark_id_, Simplex_handle simplex_handle_)
    : witness_id(witness_id_),
      landmark_id(landmark_id_),
      simplex_handle(simplex_handle_)
  {}
};
    
      


public:
  
//Simplex_tree<> st;
 
// typedef typename std::vector< Simplex_handle >::iterator    Boundary_simplex_iterator;
// typedef boost::iterator_range<Boundary_simplex_iterator>    Boundary_simplex_range;  
 
// typedef typename std::vector< Simplex_handle >::iterator    Skeleton_simplex_iterator;
// typedef boost::iterator_range< Skeleton_simplex_iterator >  Skeleton_simplex_range;

//  typedef IndexingTag Indexing_tag;
  /** \brief Type for the value of the filtration function.
   *
   * Must be comparable with <. */
//  typedef FiltrationValue Filtration_value;
  /** \brief Key associated to each simplex.
   *
   * Must be a signed integer type. */
//  typedef SimplexKey Simplex_key;

  /** \brief Type for the vertex handle.
   *
   * Must be a signed integer type. It admits a total order <. */
  typedef VertexHandle Vertex_handle;

  /* Type of node in the simplex tree. */ 
  typedef Simplex_tree_node_explicit_storage<Simplex_tree> Node;
  /* Type of dictionary Vertex_handle -> Node for traversing the simplex tree. */
  typedef typename boost::container::flat_map<Vertex_handle, Node> Dictionary;
  typedef typename Dictionary::iterator Simplex_handle;
  
/*
  friend class Simplex_tree_node_explicit_storage< Simplex_tree<FiltrationValue, SimplexKey, VertexHandle> >;
  friend class Simplex_tree_siblings< Simplex_tree<FiltrationValue, SimplexKey, VertexHandle>, Dictionary>;
  friend class Simplex_tree_simplex_vertex_iterator< Simplex_tree<FiltrationValue, SimplexKey, VertexHandle> >;
  friend class Simplex_tree_boundary_simplex_iterator< Simplex_tree<FiltrationValue, SimplexKey, VertexHandle> >;
  friend class Simplex_tree_complex_simplex_iterator< Simplex_tree<FiltrationValue, SimplexKey, VertexHandle> >;
  friend class Simplex_tree_skeleton_simplex_iterator< Simplex_tree<FiltrationValue, SimplexKey, VertexHandle> >;
*/

  /* \brief Set of nodes sharing a same parent in the simplex tree. */
  /* \brief Set of nodes sharing a same parent in the simplex tree. */
// typedef Simplex_tree_siblings<Simplex_tree, Dictionary> Siblings;


  typedef std::vector< double > Point_t;
  typedef std::vector< Point_t > Point_Vector;
  
  typedef std::vector< Vertex_handle > typeVectorVertex;
  typedef std::pair< typeVectorVertex, Filtration_value> typeSimplex;
  typedef std::pair< Simplex_tree<>::Simplex_handle, bool > typePairSimplexBool;

  typedef int Witness_id;
  typedef int Landmark_id;
  typedef std::list< Vertex_handle > ActiveWitnessList;

/**
 * /brief Iterative construction of the witness complex basing on a matrix of k nearest neighbours of the form {witnesses}x{landmarks}.
 * Landmarks are supposed to be in [0,nbL-1]
 */

  
template< typename KNearestNeighbours >
void witness_complex(KNearestNeighbours & knn)
//void witness_complex(std::vector< std::vector< Vertex_handle > > & knn)
{
  std::cout << "**Start the procedure witness_complex" << std::endl;
    int k=2; /* current dimension in iterative construction */
    //Construction of the active witness list
    int nbW = knn.size();
    int nbL = knn.at(0).size();
    //VertexHandle vh;
    typeVectorVertex vv;
    typeSimplex simplex;
    typePairSimplexBool returnValue;
    int counter = 0;
    /* The list of still useful witnesses
     * it will diminuish in the course of iterations
     */
    ActiveWitnessList active_w;// = new ActiveWitnessList();
    for (int i=0; i != nbL; ++i) {
        // initial fill of 0-dimensional simplices
        // by doing it we don't assume that landmarks are necessarily witnesses themselves anymore
        //vh = (Vertex_handle)i;
      counter++;
        vv = {i};
        /* TODO Filtration */
        //simplex = std::make_pair(vv, Filtration_value(0.0));
        //returnValue = this->insert_simplex(simplex.first, simplex.second);
        returnValue = insert_simplex(vv, Filtration_value(0.0));
        /* TODO Error if not inserted : normally no need here though*/
    }
    //vv = {0};
    //returnValue = insert_simplex(vv,Filtration_value(0.0));
    //std::cout << "Successfully added landmarks" << std::endl;
    // PRINT2
    //print_sc(root()); std::cout << std::endl;
    int u,v;     // two extremities of an edge
    if (nbL > 1) // if the supposed dimension of the complex is >0
      {
        for (int i=0; i != nbW; ++i)
          {
            // initial fill of active witnesses list
            u = knn[i][0];
            v = knn[i][1];
            //Siblings * curr_sib = &root_;
            //vh = (Vertex_handle)i;
            vv = {u,v};
            returnValue = this->insert_simplex(vv,Filtration_value(0.0));
            //print_sc(root()); std::cout << std::endl;
            //std::cout << "Added edges" << std::endl;
          }
        //print_sc(root());
        for (int i=0; i != nbW; ++i)
          {
            // initial fill of active witnesses list
            u = knn[i][0];
            v = knn[i][1];
            if ( u > v)
              {
                u = v;
                v = knn[i][0];
                knn[i][0] = knn[i][1];
                knn[i][1] = v;
              }
            Simplex_handle sh;
            vv = {u,v};
            sh = (root()->find(u))->second.children()->find(v);
            active_w.push_back(i);
        }
      }
    //std::cout << "Successfully added edges" << std::endl;
    while (!active_w.empty() && k < nbL )
      {
        //std::cout << "Started the step k=" << k << std::endl;
        typename ActiveWitnessList::iterator it = active_w.begin();
        while (it != active_w.end())
          {
            typeVectorVertex simplex_vector;
            /* THE INSERTION: Checking if all the subfaces are in the simplex tree*/
            // First sort the first k landmarks
            VertexHandle inserted_vertex = knn[*it][k];
            bool ok = all_faces_in(knn, *it, k, inserted_vertex);
            if (ok)
              {
                for (int i = 0; i != k+1; ++i)
                  simplex_vector.push_back(knn[*it][i]);
                returnValue = insert_simplex(simplex_vector,0.0);
                it++;
              }
            else
                active_w.erase(it++); //First increase the iterator and then erase the previous element
          }
        k++;
    }
    print_sc(root()); std::cout << std::endl;
}

  void witness_complex_from_file(Point_Vector point_vector, int nbL)
  {
    //READ THE FILE INTO A POINT VECTOR
    //std::vector< std::vector< double > > point_vector;
    //read_points(file_name, point_vector);
    std::vector<std::vector< int > > WL;
    furthestPoints(point_vector, point_vector.size(), nbL, WL);
    witness_complex(WL);
  }
  
private:

  void print_sc(Siblings * sibl)
  {
    if (sibl == NULL)
      std::cout << "&";
    else
      print_children(sibl->members_);
  }

  void print_children(Dictionary map)
  {
    std::cout << "(";
    if (!map.empty())
      {
        std::cout << map.begin()->first;
        /*if (map.begin()->second.children() == root())
          std::cout << "Sweet potato"; */
        if (has_children(map.begin()))
          print_sc(map.begin()->second.children());
        typename Dictionary::iterator it;
        for (it = map.begin()+1; it != map.end(); ++it)
          {
            std::cout << "," << it->first;
            /*if (map.begin()->second.children() == root())
              std::cout << "Sweet potato";*/
            if (has_children(it))
              print_sc(it->second.children());
          }
      }
    std::cout << ")";
  }

  template <typename KNearestNeighbours>
  bool all_faces_in(KNearestNeighbours &knn, int witness_id, int k, VertexHandle inserted_vertex)
  {
    //std::cout << "All face in with the landmark " << inserted_vertex << std::endl;
    std::vector< VertexHandle > facet;
    //VertexHandle curr_vh = curr_sh->first;
    // CHECK ALL THE FACETS
    for (int i = 0; i != k+1; ++i)
      {
        if (knn[witness_id][i] != inserted_vertex)
          {
            facet = {};
            for (int j = 0; j != k+1; ++j)
              {
                if (j != i)
                  {
                    facet.push_back(knn[witness_id][j]);
                  }
              }//endfor
            if (find(facet) == null_simplex())
              return false;
            //std::cout << "++++ finished loop safely\n";
          }//endif
      } //endfor
      return true;
  }

  template <typename T>
  void print_vector(std::vector<T> v)
  {
    std::cout << "[";
    if (!v.empty())
      {
        std::cout << *(v.begin());
        for (auto it = v.begin()+1; it != v.end(); ++it)
          {
            std::cout << ",";
            std::cout << *it;
          }
      }
    std::cout << "]";
  }
    
  template <typename T>
  void print_vvector(std::vector< std::vector <T> > vv)
  {
    std::cout << "[";
    if (!vv.empty())
      {
        print_vector(*(vv.begin()));
        for (auto it = vv.begin()+1; it != vv.end(); ++it)
          {
            std::cout << ",";
            print_vector(*it);
          }
      }
    std::cout << "]\n";
  }
  
/**
 * \brief Permutes the vector in such a way that the landmarks appear first
 * \arg W is the vector of points which will be the witnesses
 * \arg nbP is the number of witnesses
 * \arg nbL is the number of landmarks
 * \arg WL is the matrix of the nearest landmarks with respect to witnesses (output)
 */

  template <typename KNearestNeighbours>
    void furthestPoints(Point_Vector &W, int nbP, int nbL, KNearestNeighbours &WL)
  //void furthestPoints(Point_Vector &W, int nbP, int nbL, Point_Vector &L)
  {
    std::cout << "Enter furthestPoints "<< std::endl;
    // What is density and why we need it.
    // basically it is the stop indicator for "no more landmarks"
    //std::cout << "W="; print_vvector(W);
    //double density = 5.;
    std::vector< std::vector<double> > wit_land_dist(nbP,std::vector<double>()); // distance matrix witness x landmarks
    std::vector< int >                 chosen_landmarks;    // landmark list

    WL = KNearestNeighbours(nbP,std::vector<int>()); //nbP copies of empty vectors
    int current_number_of_landmarks=0;
    double curr_max_dist = 0;
    double curr_dist;
    double infty = std::numeric_limits<double>::infinity();
    std::vector< double > dist_to_L(nbP,infty);
    // double mindist = infty;
    int curr_max_w=0;
    int j;
    int temp_swap_int;
    double temp_swap_double;

    //CHOICE OF THE FIRST LANDMARK
    //std::cout << "Enter the first landmark stage\n";
    srand(354698);
    int rand_int = rand()% nbP;
    curr_max_w = rand_int;

    for (current_number_of_landmarks = 0; current_number_of_landmarks != nbL; current_number_of_landmarks++)
      {
        chosen_landmarks.push_back(curr_max_w);
        curr_max_dist = 0;
        std::cout << "**********Entered loop with current number of landmarks = " << current_number_of_landmarks << std::endl;
        std::cout << "WL="; print_vvector(WL);
        std::cout << "WLD="; print_vvector(wit_land_dist);
        std::cout << "landmarks="; print_vector(chosen_landmarks); std::cout << std::endl;
        for (auto v: WL)
          v.push_back(current_number_of_landmarks);
        for (int i = 0; i < nbP; ++i)
          {
            std::cout << "In the loop with i=" << i << " and landmark=" << chosen_landmarks[current_number_of_landmarks] << std::endl;
            //std::cout << "W[i]="; print_vector(W[i]); std::cout << " W[landmark]="; print_vector(W[chosen_landmarks[current_number_of_landmarks]]); std::cout << std::endl;
            if (i != chosen_landmarks[current_number_of_landmarks])
              curr_dist = euclidean_distance(W[i],W[chosen_landmarks[current_number_of_landmarks]]);
            else
              curr_dist = 0;
            //std::cout << "The problem is not in distance function\n";
            wit_land_dist[i].push_back(curr_dist);
            WL[i].push_back(current_number_of_landmarks);
            //std::cout << "Push't back\n";
            if (curr_dist < dist_to_L[i])
              dist_to_L[i] = curr_dist;
            if (dist_to_L[i] > curr_max_dist)
              {
                curr_max_dist = curr_dist;
                curr_max_w = i;
              }
            j = current_number_of_landmarks;
            //std::cout << "First half complete\n";
            while (j > 0 && wit_land_dist[i][j-1] > wit_land_dist[i][j])
              {
                temp_swap_int = WL[i][j];
                WL[i][j] = WL[i][j-1];
                WL[i][j-1] = temp_swap_int;
                temp_swap_double = wit_land_dist[i][j];
                wit_land_dist[i][j] = wit_land_dist[i][j-1];
                wit_land_dist[i][j-1] = temp_swap_double;
                --j;
              }
            std::cout << "result WL="; print_vvector(WL);
            std::cout << "result WLD="; print_vvector(wit_land_dist);

            std::cout << "End loop\n";
          }
      }
    /*
    while (1) {
      curr_w = 0;
      curr_max_dist = -1;
      for(Point_Vector::iterator itW = W.begin(); itW != W.end(); itW++) {
        //compute distance from w and L
        mindist = infty;
        for(Point_Vector::iterator itL = L.begin(); itL != L.end(); itL++) {
          //curr_dist = distPoints(*itW,*itL);
          curr_dist = euclidean_distance(*itW,*itL);
          if(curr_dist < mindist) {
            mindist = curr_dist;
          }
        }
        if(mindist > curr_max_dist) {
          curr_max_w = curr_w; //???
          curr_max_dist = mindist;
        }
        curr_w++;
      }
      L.push_back(W[curr_max_w]);
      current_number_of_landmarks++;
      //density = sqrt(curr_max_dist);
      //std::cout << "[" << current_number_of_landmarks << ":" << density <<"] ";
      if(L.size() == nbL) break;
    }
    */
    //std::cout << endl;
    //return L;
  }
  
}; //class Witness_complex

  
} // namespace Guhdi

#endif