summaryrefslogtreecommitdiff
path: root/src/cython/test/test_persistence_representations_landscapes_on_grid.py
blob: 7a1f2b4977d8643359f5d399246b78da3bc179e1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import gudhi

"""
    This file is part of the Gudhi Library. The Gudhi library
    (Geometric Understanding in Higher Dimensions) is a generic C++
    library for computational topology.

    Author(s):       Pawel Dlotko

    Copyright (C) 2017  Swansea University

    This program is free software: you can redistribute it and/or modify
     it under the terms of the GNU General Public License as published by
     the Free Software Foundation, either version 3 of the License, or
     (at your option) any later version.

    This program is distributed in the hope that it will be useful,
     but WITHOUT ANY WARRANTY; without even the implied warranty of
     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
     along with this program.  If not, see <http://www.gnu.org/licenses/>.
"""

__author__ = "Pawel Dlotko"
__copyright__ = "Copyright (C) 2017 Swansea University"
__license__ = "GPL v3"

epsilon = 0.0000005;



def test_check_construction_of_landscape:
    l = gudhi.PersistenceLandscapeOnGrid("data/file_with_diagram_1", 100,sys.maxsize)
    l.print_to_file("landscape_from_file_with_diagram_1")
    g = gudhi.PersistenceLandscapeOnGrid()
    g.load_landscape_from_file("landscape_from_file_with_diagram_1")
    assert l == g


def test_check_construction_of_landscape_using_only_ten_levels:
    number = 10
    l = gudhi.PersistenceLandscapeOnGrid("data/file_with_diagram_1", 100, number)
    g = gudhi.PersistenceLandscapeOnGrid("data/file_with_diagram_1", 100, sys.maxsize)
    for level in range(0,number):
        v1 = l.vectorize(level)
        v2 = g.vectorize(level)
        assert v1 == v2
    
def test_check_computations_of_integrals:
    p = gudhi.PersistenceLandscapeOnGrid("data/file_with_diagram_1", 100, sys.maxsize)
    integral = p.compute_integral_of_landscape()
    assert fabs(integral - 27.343) <= 0.00005

def test_check_computations_of_integrals_for_each_level_separatelly:
    p = gudhi.PersistenceLandscapeOnGrid("data/file_with_diagram_1", 100, sys.maxsize)
    integrals_fir_different_levels = [0.241168,0.239276,0.237882,0.235193,0.230115,0.227626,0.226132.0.223643,0.221651,0.220556,0.21727,0.215976,0.213685,0.211993,0.2102,0.208707,0.207014,0.205122,0.204226,0.202633]
    for level in range(0,len(integrals_fir_different_levels))
        integral = p.compute_integral_of_landscape(level);    
        assert fabs(integral - integrals_fir_different_levels[level]) <= 0.00005

def test_check_computations_of_integrals_of_powers_of_landscape:
    p = gudhi.PersistenceLandscapeOnGrid("data/file_with_diagram_1", 100, sys.maxsize)
    integrals_fir_different_powers = [0.241168,0.239276,0.237882,0.235193,0.23011]
    for power in range(0:5):
        integral = p.compute_integral_of_landscape(power)
        assert fabs(integral - integrals_fir_different_powers[power]) <= 0.00001
  
def test_check_computations_of_values_on_different_points:
    p = gudhi.PersistenceLandscapeOnGrid("data/file_with_diagram_1", 100, sys.maxsize)
    results_level_0 = [0.00997867,0.0521921,0.104312,0.156432,0.208552,0.260672,0.312792,0.364912,0.417032,0.429237]
    results_level_10 = [7.21433e-05,0.0422135,0.0943335,0.146453,0.198573,0.240715,0.272877,0.324997,0.359232,0.379344]
    double x = 0.0012321;
    double dx = 0.05212;
    for i in range(0,10):
        assert almost_equal(p.compute_value_at_a_given_point(0, x), results_level_0[i]));
        assert almost_equal(p.compute_value_at_a_given_point(10, x), results_level_10[i]));
        x += dx;
  
def test_check_computations_of_maxima_and_norms:
    p = gudhi.PersistenceLandscapeOnGrid("data/file_with_diagram_1", 0., 1., 100)
    second = gudhi.PersistenceLandscapeOnGrid("data/file_with_diagram_2", 0., 1., 100)
    assert fabs(p.compute_maximum() - 0.46) <= 0.00001
    assert fabs(p.compute_norm_of_landscape(1) - 27.3373) <= 0.00001
    assert fabs(p.compute_norm_of_landscape(2) - 1.84143) <= 0.00001
    assert fabs(p.compute_norm_of_landscape(3) - 0.927067) <= 0.00001

def test_check_default_parameters_of_distances:
    diag = read_persistence_intervals_in_dimension("data/file_with_diagram")
    p = gudhi.PersistenceLandscapeOnGrid(diag, 0., 1., 100)
    diag1 = read_persistence_intervals_in_dimension("data/file_with_diagram_1")
    q = gudhi.PersistenceLandscapeOnGrid(diag1, 0., 1., 100)
    dist_numeric_limit_max = p.distance(q, sys.maxsize);
    dist_infinity = p.distance(q, sys.maxsize);
    assert dist_numeric_limit_max == dist_infinity

def test_check_computations_of_averages:
    p = gudhi.PersistenceLandscapeOnGrid("data/file_with_diagram", 0., 1., 100)
    q = gudhi.PersistenceLandscapeOnGrid("data/file_with_diagram_1", 0., 1., 100)
    av = gudhi.PersistenceLandscapeOnGrid()
    av.compute_average({&p, &q)

    template_average = gudhi.PersistenceLandscapeOnGrid()
    template_average.load_landscape_from_file("data/average_on_a_grid")
    assert template_average == av


def test_check_computations_of_distances:
    p = gudhi.PersistenceLandscapeOnGrid("data/file_with_diagram", 0., 1., 10000)
    q = gudhi.PersistenceLandscapeOnGrid("data/file_with_diagram_1", 0., 1., 10000)
    assert fabs(p.distance(q) - 25.5779) <= 0.00005
    assert fabs(p.distance(q, 2) - 2.04891) <= 0.00001
    assert fabs(p.distance(q, sys.maxsize) - 0.359) <= 0.00001


def test_check_computations_of_scalar_product:
    p = gudhi.PersistenceLandscapeOnGrid("data/file_with_diagram", 0., 1., 10000)
    q = gudhi.PersistenceLandscapeOnGrid("data/file_with_diagram_1", 0., 1., 10000)
    assert almost_equal(p.compute_scalar_product(q), 0.754367)