summaryrefslogtreecommitdiff
path: root/geom_bottleneck/include/bottleneck_detail.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'geom_bottleneck/include/bottleneck_detail.hpp')
-rw-r--r--geom_bottleneck/include/bottleneck_detail.hpp580
1 files changed, 151 insertions, 429 deletions
diff --git a/geom_bottleneck/include/bottleneck_detail.hpp b/geom_bottleneck/include/bottleneck_detail.hpp
index 64c6696..24cb725 100644
--- a/geom_bottleneck/include/bottleneck_detail.hpp
+++ b/geom_bottleneck/include/bottleneck_detail.hpp
@@ -46,16 +46,144 @@ derivative works thereof, in binary and source code form.
namespace hera {
namespace bt {
+template<class Real>
+void binarySearch(const Real epsilon,
+ std::pair<Real, Real>& result,
+ BoundMatchOracle<Real>& oracle,
+ const Real infinityCost,
+ bool isResultInitializedCorrectly,
+ const Real distProbeInit)
+{
+ // aliases for result components
+ Real& distMin = result.first;
+ Real& distMax = result.second;
+
+ distMin = std::max(distMin, infinityCost);
+ distMax = std::max(distMax, infinityCost);
+
+ Real distProbe;
+
+ if (not isResultInitializedCorrectly) {
+ distProbe = distProbeInit;
+ if (oracle.isMatchLess(distProbe)) {
+ // distProbe is an upper bound,
+ // find lower bound with binary search
+ do {
+ distMax = distProbe;
+ distProbe /= 2.0;
+ } while (oracle.isMatchLess(distProbe));
+ distMin = distProbe;
+ } else {
+ // distProbe is a lower bound,
+ // find upper bound with exponential search
+ do {
+ distMin = distProbe;
+ distProbe *= 2.0;
+ } while (!oracle.isMatchLess(distProbe));
+ distMax = distProbe;
+ }
+ }
+ // bounds are correct , perform binary search
+ distProbe = ( distMin + distMax ) / 2.0;
+ while (( distMax - distMin ) / distMin >= epsilon ) {
+
+ if (distMax < infinityCost) {
+ distMin = infinityCost;
+ distMax = infinityCost;
+ break;
+ }
+
+ if (oracle.isMatchLess(distProbe)) {
+ distMax = distProbe;
+ } else {
+ distMin = distProbe;
+ }
+
+ distProbe = ( distMin + distMax ) / 2.0;
+ }
+
+ distMin = std::max(distMin, infinityCost);
+ distMax = std::max(distMax, infinityCost);
+}
+
+template<class Real>
+inline Real getOneDimensionalCost(std::vector<Real> &set_A, std::vector<Real> &set_B)
+{
+ if (set_A.size() != set_B.size()) {
+ return std::numeric_limits<Real>::infinity();
+ }
+
+ if (set_A.empty()) {
+ return Real(0.0);
+ }
+
+ std::sort(set_A.begin(), set_A.end());
+ std::sort(set_B.begin(), set_B.end());
+
+ Real result = 0.0;
+ for(size_t i = 0; i < set_A.size(); ++i) {
+ result = std::max(result, (std::fabs(set_A[i] - set_B[i])));
+ }
+
+ return result;
+}
+
+template<class Real>
+inline Real getInfinityCost(const DiagramPointSet <Real> &A, const DiagramPointSet <Real> &B)
+{
+ std::vector<Real> x_plus_A, x_minus_A, y_plus_A, y_minus_A;
+ std::vector<Real> x_plus_B, x_minus_B, y_plus_B, y_minus_B;
+
+ for(auto iter_A = A.cbegin(); iter_A != A.cend(); ++iter_A) {
+ Real x = iter_A->getRealX();
+ Real y = iter_A->getRealY();
+ if ( x == std::numeric_limits<Real>::infinity()) {
+ y_plus_A.push_back(y);
+ } else if (x == -std::numeric_limits<Real>::infinity()) {
+ y_minus_A.push_back(y);
+ } else if (y == std::numeric_limits<Real>::infinity()) {
+ x_plus_A.push_back(x);
+ } else if (y == -std::numeric_limits<Real>::infinity()) {
+ x_minus_A.push_back(x);
+ }
+ }
+
+ for(auto iter_B = B.cbegin(); iter_B != B.cend(); ++iter_B) {
+ Real x = iter_B->getRealX();
+ Real y = iter_B->getRealY();
+ if (x == std::numeric_limits<Real>::infinity()) {
+ y_plus_B.push_back(y);
+ } else if (x == -std::numeric_limits<Real>::infinity()) {
+ y_minus_B.push_back(y);
+ } else if (y == std::numeric_limits<Real>::infinity()) {
+ x_plus_B.push_back(x);
+ } else if (y == -std::numeric_limits<Real>::infinity()) {
+ x_minus_B.push_back(x);
+ }
+ }
+
+ Real infinity_cost = getOneDimensionalCost(x_plus_A, x_plus_B);
+ infinity_cost = std::max(infinity_cost, getOneDimensionalCost(x_minus_A, x_minus_B));
+ infinity_cost = std::max(infinity_cost, getOneDimensionalCost(y_plus_A, y_plus_B));
+ infinity_cost = std::max(infinity_cost, getOneDimensionalCost(y_minus_A, y_minus_B));
+
+ return infinity_cost;
+}
+
// return the interval (distMin, distMax) such that:
// a) actual bottleneck distance between A and B is contained in the interval
// b) if the interval is not (0,0), then (distMax - distMin) / distMin < epsilon
template<class Real>
-std::pair<Real, Real> bottleneckDistApproxInterval(DiagramPointSet<Real>& A, DiagramPointSet<Real>& B, const Real epsilon)
+inline std::pair<Real, Real> bottleneckDistApproxInterval(DiagramPointSet<Real>& A, DiagramPointSet<Real>& B, const Real epsilon)
{
// empty diagrams are not considered as error
if (A.empty() and B.empty())
return std::make_pair(0.0, 0.0);
+ Real infinity_cost = getInfinityCost(A, B);
+ if (infinity_cost == std::numeric_limits<Real>::infinity())
+ return std::make_pair(infinity_cost, infinity_cost);
+
// link diagrams A and B by adding projections
addProjections(A, B);
@@ -74,47 +202,13 @@ std::pair<Real, Real> bottleneckDistApproxInterval(DiagramPointSet<Real>& A, Dia
// get a 3-approximation of maximal distance between A and B
// as a starting value for probe distance
Real distProbe { getFurthestDistance3Approx<Real, DiagramPointSet<Real>>(A, B) };
- // aliases for result components
- Real& distMin {result.first};
- Real& distMax {result.second};
-
- if ( oracle.isMatchLess(distProbe) ) {
- // distProbe is an upper bound,
- // find lower bound with binary search
- do {
- distMax = distProbe;
- distProbe /= 2.0;
- } while (oracle.isMatchLess(distProbe));
- distMin = distProbe;
- } else {
- // distProbe is a lower bound,
- // find upper bound with exponential search
- do {
- distMin = distProbe;
- distProbe *= 2.0;
- } while (!oracle.isMatchLess(distProbe));
- distMax = distProbe;
- }
- // bounds are found, perform binary search
- //std::cout << "Bounds found, distMin = " << distMin << ", distMax = " << distMax << ", ratio = " << ( distMax - distMin ) / distMin << std::endl ;
- distProbe = ( distMin + distMax ) / 2.0;
- while ( ( distMax - distMin ) / distMin >= epsilon ) {
- if (oracle.isMatchLess(distProbe)) {
- distMax = distProbe;
- } else {
- distMin = distProbe;
- }
- distProbe = ( distMin + distMax ) / 2.0;
- }
+ binarySearch(epsilon, result, oracle, infinity_cost, false, distProbe);
return result;
}
template<class Real>
void sampleDiagramForHeur(const DiagramPointSet<Real>& dgmIn, DiagramPointSet<Real>& dgmOut)
{
-#ifdef VERBOSE_BOTTLENECK
- std::cout << "Entered sampleDiagramForHeur, dgmIn.size = " << dgmIn.size() << std::endl;
-#endif
struct pair_hash {
std::size_t operator()(const std::pair<Real, Real> p) const
{
@@ -123,14 +217,11 @@ void sampleDiagramForHeur(const DiagramPointSet<Real>& dgmIn, DiagramPointSet<Re
};
std::unordered_map<std::pair<Real, Real>, int, pair_hash> m;
for(auto ptIter = dgmIn.cbegin(); ptIter != dgmIn.cend(); ++ptIter) {
- if (ptIter->isNormal()) {
+ if (ptIter->isNormal() and not ptIter->isInfinity()) {
m[std::make_pair(ptIter->getRealX(), ptIter->getRealY())]++;
}
}
-#ifdef VERBOSE_BOTTLENECK
- std::cout << "map filled in, m.size = " << m.size() << std::endl;
-#endif
- if (m.size() < 2) {
+ if (m.size() < 2) {
dgmOut = dgmIn;
return;
}
@@ -138,13 +229,7 @@ void sampleDiagramForHeur(const DiagramPointSet<Real>& dgmIn, DiagramPointSet<Re
for(const auto& ptQtyPair : m) {
v.push_back(ptQtyPair.second);
}
-#ifdef VERBOSE_BOTTLENECK
- std::cout << "v filled in, v.size = " << v.size() << std::endl;
-#endif
std::sort(v.begin(), v.end());
-#ifdef VERBOSE_BOTTLENECK
- std::cout << "v sorted" << std::endl;
-#endif
int maxLeap = v[1] - v[0];
int cutVal = v[0];
for(int i = 1; i < static_cast<int>(v.size())- 1; ++i) {
@@ -154,10 +239,7 @@ void sampleDiagramForHeur(const DiagramPointSet<Real>& dgmIn, DiagramPointSet<Re
cutVal = v[i];
}
}
-#ifdef VERBOSE_BOTTLENECK
- std::cout << "cutVal found, cutVal = " << cutVal << std::endl;
-#endif
- std::vector<std::pair<Real, Real>> vv;
+ std::vector<std::pair<Real, Real>> vv;
// keep points whose multiplicites are at most cutVal
// quick-and-dirty: fill in vv with copies of each point
// to construct DiagramPointSet from it later
@@ -168,14 +250,8 @@ void sampleDiagramForHeur(const DiagramPointSet<Real>& dgmIn, DiagramPointSet<Re
}
}
}
-#ifdef VERBOSE_BOTTLENECK
- std::cout << "vv filled in, vv.size = " << v.size() << std::endl;
-#endif
dgmOut.clear();
dgmOut = DiagramPointSet<Real>(vv.begin(), vv.end());
-#ifdef VERBOSE_BOTTLENECK
- std::cout << "dgmOut filled in, dgmOut.size = " << dgmOut.size() << std::endl;
-#endif
}
@@ -183,7 +259,10 @@ void sampleDiagramForHeur(const DiagramPointSet<Real>& dgmIn, DiagramPointSet<Re
// a) actual bottleneck distance between A and B is contained in the interval
// b) if the interval is not (0,0), then (distMax - distMin) / distMin < epsilon
template<class Real>
-std::pair<Real, Real> bottleneckDistApproxIntervalWithInitial(DiagramPointSet<Real>& A, DiagramPointSet<Real>& B, const Real epsilon, const std::pair<Real, Real> initialGuess)
+std::pair<Real, Real> bottleneckDistApproxIntervalWithInitial(DiagramPointSet<Real>& A, DiagramPointSet<Real>& B,
+ const Real epsilon,
+ const std::pair<Real, Real> initialGuess,
+ const Real infinity_cost)
{
// empty diagrams are not considered as error
if (A.empty() and B.empty())
@@ -197,6 +276,7 @@ std::pair<Real, Real> bottleneckDistApproxIntervalWithInitial(DiagramPointSet<Re
bool useRangeSearch { true };
// construct an oracle
BoundMatchOracle<Real> oracle(A, B, epsThreshold, useRangeSearch);
+
Real& distMin {result.first};
Real& distMax {result.second};
@@ -223,16 +303,8 @@ std::pair<Real, Real> bottleneckDistApproxIntervalWithInitial(DiagramPointSet<Re
}
// bounds are found, perform binary search
- //std::cout << "Bounds found, distMin = " << distMin << ", distMax = " << distMax << ", ratio = " << ( distMax - distMin ) / distMin << std::endl ;
Real distProbe = ( distMin + distMax ) / 2.0;
- while ( ( distMax - distMin ) / distMin >= epsilon ) {
- if (oracle.isMatchLess(distProbe)) {
- distMax = distProbe;
- } else {
- distMin = distProbe;
- }
- distProbe = ( distMin + distMax ) / 2.0;
- }
+ binarySearch(epsilon, result, oracle, infinity_cost, true, distProbe);
return result;
}
@@ -247,19 +319,20 @@ std::pair<Real, Real> bottleneckDistApproxIntervalHeur(DiagramPointSet<Real>& A,
if (A.empty() and B.empty())
return std::make_pair(0.0, 0.0);
+ Real infinity_cost = getInfinityCost(A, B);
+ if (infinity_cost == std::numeric_limits<Real>::infinity())
+ return std::make_pair(infinity_cost, infinity_cost);
+
DiagramPointSet<Real> sampledA, sampledB;
sampleDiagramForHeur(A, sampledA);
sampleDiagramForHeur(B, sampledB);
-#ifdef VERBOSE_BOTTLENECK
- std::cout << "A : " << A.size() << ", sampled: " << sampledA.size() << std::endl;
- std::cout << "B : " << B.size() << ", sampled: " << sampledB.size() << std::endl;
-#endif
+
std::pair<Real, Real> initGuess = bottleneckDistApproxInterval(sampledA, sampledB, epsilon);
-#ifdef VERBOSE_BOTTLENECK
- std::cout << "initial guess with sampling: " << initGuess.first << ", " << initGuess.second << std::endl;
- std::cout << "running on the original diagrams" << std::endl;
-#endif
- return bottleneckDistApproxIntervalWithInitial<Real>(A, B, epsilon, initGuess);
+
+ initGuess.first = std::max(initGuess.first, infinity_cost);
+ initGuess.second = std::max(initGuess.second, infinity_cost);
+
+ return bottleneckDistApproxIntervalWithInitial<Real>(A, B, epsilon, initGuess, infinity_cost);
}
@@ -277,9 +350,6 @@ Real bottleneckDistApprox(DiagramPointSet<Real>& A, DiagramPointSet<Real>& B, co
template<class Real>
Real bottleneckDistExactFromSortedPwDist(DiagramPointSet<Real>&A, DiagramPointSet<Real>& B, std::vector<Real>& pairwiseDist, const int decPrecision)
{
- //for(size_t k = 0; k < pairwiseDist.size(); ++k) {
- //std::cout << "pairwiseDist[" << k << "] = " << std::setprecision(15) << pairwiseDist[k] << std::endl;
- //}
// trivial case: we have only one candidate
if (pairwiseDist.size() == 1)
return pairwiseDist[0];
@@ -292,13 +362,11 @@ Real bottleneckDistExactFromSortedPwDist(DiagramPointSet<Real>&A, DiagramPointSe
}
for(size_t k = 0; k < pairwiseDist.size() - 2; ++k) {
auto diff = pairwiseDist[k+1]- pairwiseDist[k];
- //std::cout << "diff = " << diff << ", pairwiseDist[k] = " << pairwiseDist[k] << std::endl;
if ( diff > diffThreshold and diff < distEpsilon ) {
distEpsilon = diff;
}
}
distEpsilon /= 3.0;
- //std::cout << "decPrecision = " << decPrecision << ", distEpsilon = " << distEpsilon << std::endl;
BoundMatchOracle<Real> oracle(A, B, distEpsilon, useRangeSearch);
// binary search
@@ -307,17 +375,13 @@ Real bottleneckDistExactFromSortedPwDist(DiagramPointSet<Real>&A, DiagramPointSe
size_t idxMid;
while(idxMax > idxMin) {
idxMid = static_cast<size_t>(floor(idxMin + idxMax) / 2.0);
- //std::cout << "while begin: min = " << idxMin << ", idxMax = " << idxMax << ", idxMid = " << idxMid << ", testing d = " << std::setprecision(15) << pairwiseDist[idxMid] << std::endl;
iterNum++;
// not A[imid] < dist <=> A[imid] >= dist <=> A[imid[ >= dist + eps
if (oracle.isMatchLess(pairwiseDist[idxMid] + distEpsilon / 2.0)) {
- //std::cout << "isMatchLess = true" << std::endl;
idxMax = idxMid;
} else {
- //std::cout << "isMatchLess = false " << std::endl;
idxMin = idxMid + 1;
}
- //std::cout << "while end: idxMin = " << idxMin << ", idxMax = " << idxMax << ", idxMid = " << idxMid << std::endl;
}
idxMid = static_cast<size_t>(floor(idxMin + idxMax) / 2.0);
return pairwiseDist[idxMid];
@@ -337,11 +401,12 @@ Real bottleneckDistExact(DiagramPointSet<Real>& A, DiagramPointSet<Real>& B, con
constexpr Real epsilon = 0.001;
auto interval = bottleneckDistApproxInterval(A, B, epsilon);
+ if (interval.first == interval.second)
+ return interval.first;
const Real delta = 0.50001 * (interval.second - interval.first);
const Real approxDist = 0.5 * ( interval.first + interval.second);
const Real minDist = interval.first;
const Real maxDist = interval.second;
- //std::cout << std::setprecision(15) << "minDist = " << minDist << ", maxDist = " << maxDist << std::endl;
if ( delta == 0 ) {
return interval.first;
}
@@ -353,21 +418,6 @@ Real bottleneckDistExact(DiagramPointSet<Real>& A, DiagramPointSet<Real>& B, con
pointsA.push_back(ptA);
}
- //std::vector<Real> killdist;
- //for(auto pta : a) {
- //for(auto ptb : b) {
- //if ( distlinf(pta, ptb) > mindist and distlinf(pta, ptb) < maxdist) {
- //killdist.push_back(distlinf(pta, ptb));
- //std::cout << pta << ", " << ptb << std::endl;
- //}
- //}
- //}
- //std::sort(killdist.begin(), killdist.end());
- //for(auto d : killdist) {
- //std::cout << d << std::endl;
- //}
- //std::cout << "*************" << std::endl;
-
// in this vector we store the distances between the points
// that are candidates to realize
std::vector<Real> pairwiseDist;
@@ -385,13 +435,6 @@ Real bottleneckDistExact(DiagramPointSet<Real>& A, DiagramPointSet<Real>& B, con
{ return a.first < b.first; };
std::sort(xCentersVec.begin(), xCentersVec.end(), compLambda);
- //std::cout << "xCentersVec.size = " << xCentersVec.size() << std::endl;
- //for(auto p = xCentersVec.begin(); p!= xCentersVec.end(); ++p) {
- //if (p->second.id == 200) {
- //std::cout << "index of 200: " << p - xCentersVec.begin() << std::endl;
- //}
- //}
- //std::vector<DgmPoint>
// todo: sort points in B, reduce search range in lower and upper bounds
for(auto ptB : B) {
// iterator to the first stripe such that ptB lies to the left
@@ -400,30 +443,17 @@ Real bottleneckDistExact(DiagramPointSet<Real>& A, DiagramPointSet<Real>& B, con
xCentersVec.end(),
std::make_pair(ptB.getRealX() - delta, ptB),
compLambda);
- //if (ptB.id == 236) {
- //std::cout << itStart - xCentersVec.begin() << std::endl;
- //}
for(auto iterA = itStart; iterA < xCentersVec.end(); ++iterA) {
- //if (ptB.id == 236) {
- //std::cout << "consider " << iterA->second << std::endl;
- //}
if ( ptB.getRealX() < iterA->first - delta) {
// from that moment x_B >= x_j - delta
// is violated: x_B no longer lies to right from the left
// boundary of current stripe
- //if (ptB.id == 236) {
- //std::cout << "break" << std::endl;
- //}
break;
}
// we're here => ptB lies in vertical stripe,
// check if distance fits into the interval we've found
Real pwDist = distLInf(iterA->second, ptB);
- //if (ptB.id == 236) {
- //std::cout << pwDist << std::endl;
- //}
- //std::cout << 1000*minDist << " <= " << 1000*pwDist << " <= " << 1000*maxDist << std::endl;
if (pwDist >= minDist and pwDist <= maxDist) {
pairwiseDist.push_back(pwDist);
}
@@ -447,13 +477,6 @@ Real bottleneckDistExact(DiagramPointSet<Real>& A, DiagramPointSet<Real>& B, con
std::sort(yCentersVec.begin(), yCentersVec.end(), compLambda);
- // std::cout << "Sorted vector of y-centers:" << std::endl;
- //for(auto coordPtPair : yCentersVec) {
- //std::cout << coordPtPair.first << ", id = " << coordPtPair.second.id << std::endl;
- //}
- /*std::cout << "End of sorted vector of y-centers:" << std::endl;*/
-
- //std::vector<DgmPoint>
// todo: sort points in B, reduce search range in lower and upper bounds
for(auto ptB : B) {
auto itStart = std::lower_bound(yCentersVec.begin(),
@@ -467,7 +490,6 @@ Real bottleneckDistExact(DiagramPointSet<Real>& A, DiagramPointSet<Real>& B, con
break;
}
Real pwDist = distLInf(iterA->second, ptB);
- //std::cout << 1000*minDist << " <= " << 1000*pwDist << " <= " << 1000*maxDist << std::endl;
if (pwDist >= minDist and pwDist <= maxDist) {
pairwiseDist.push_back(pwDist);
}
@@ -475,311 +497,11 @@ Real bottleneckDistExact(DiagramPointSet<Real>& A, DiagramPointSet<Real>& B, con
}
}
- //std::cout << "pairwiseDist.size = " << pairwiseDist.size() << " out of " << A.size() * A.size() << std::endl;
std::sort(pairwiseDist.begin(), pairwiseDist.end());
- //for(auto ddd : pairwiseDist) {
- //std::cout << std::setprecision(15) << ddd << std::endl;
- //}
return bottleneckDistExactFromSortedPwDist(A, B, pairwiseDist, decPrecision);
}
-template<class Real>
-Real bottleneckDistSlow(DiagramPointSet<Real>& A, DiagramPointSet<Real>& B)
-{
- using DistVerticesPair = std::pair<Real, std::pair<size_t, size_t>>;
-
- // use range search when building the layer graph
- bool useRangeSearch { true };
- // find maximum of min. distances for each point,
- // use this value as lower bound for bottleneck distance
- bool useHeurMinIdx { true };
-
- // find matching in a greedy manner to
- // get an upper bound for a bottleneck distance
- bool useHeurGreedyMatching { false };
-
- // use successive multiplication of idxMin with 2 to get idxMax
- bool goUpToFindIdxMax { false };
- //
- goUpToFindIdxMax = goUpToFindIdxMax and !useHeurGreedyMatching;
-
- if (!useHeurGreedyMatching) {
- long int N = 3 * (A.size() / 2 ) * (B.size() / 2);
- std::vector<Real> pairwiseDist;
- pairwiseDist.reserve(N);
- Real maxMinDist {0.0};
- for(auto& p_A : A) {
- Real minDist { std::numeric_limits<Real>::max() };
- for(auto& p_B : B) {
- if (p_A.isNormal() or p_B.isNormal()) {
- Real d = distLInf(p_A, p_B);
- pairwiseDist.push_back(d);
- if (useHeurMinIdx and p_A.isNormal()) {
- if (d < minDist)
- minDist = d;
- }
- }
- }
- if (useHeurMinIdx and p_A.isNormal() and minDist > maxMinDist) {
- maxMinDist = minDist;
- }
- }
-
- std::sort(pairwiseDist.begin(), pairwiseDist.end());
-
- Real distEpsilon = std::numeric_limits<Real>::max();
- for(size_t k = 0; k < pairwiseDist.size() - 2; ++k) {
- auto diff = pairwiseDist[k+1]- pairwiseDist[k];
- if ( diff > 1.0e-10 and diff < distEpsilon ) {
- distEpsilon = diff;
- }
- }
- distEpsilon /= 3.0;
-
- BoundMatchOracle<Real> oracle(A, B, distEpsilon, useRangeSearch);
- // binary search
- size_t iterNum {0};
- size_t idxMin {0}, idxMax {pairwiseDist.size() - 1};
- if (useHeurMinIdx) {
- auto maxMinIter = std::equal_range(pairwiseDist.begin(), pairwiseDist.end(), maxMinDist);
- assert(maxMinIter.first != pairwiseDist.end());
- idxMin = maxMinIter.first - pairwiseDist.begin();
- //std::cout << "maxMinDist = " << maxMinDist << ", idxMin = " << idxMin << ", d = " << pairwiseDist[idxMin] << std::endl;
- }
-
- if (goUpToFindIdxMax) {
- if ( pairwiseDist.size() == 1) {
- return pairwiseDist[0];
- }
-
- idxMax = std::max<size_t>(idxMin, 1);
- while (!oracle.isMatchLess(pairwiseDist[idxMax])) {
- //std::cout << "entered while" << std::endl;
- idxMin = idxMax;
- if (2*idxMax > pairwiseDist.size() -1) {
- idxMax = pairwiseDist.size() - 1;
- break;
- } else {
- idxMax *= 2;
- }
- }
- //std::cout << "size = " << pairwiseDist.size() << ", idxMax = " << idxMax << ", pw[max] = " << pairwiseDist[idxMax] << std::endl;
- }
-
- size_t idxMid { (idxMin + idxMax) / 2 };
- while(idxMax > idxMin) {
- iterNum++;
- if (oracle.isMatchLess(pairwiseDist[idxMid])) {
- idxMax = idxMid;
- } else {
- if (idxMax - idxMin == 1)
- idxMin++;
- else
- idxMin = idxMid;
- }
- idxMid = (idxMin + idxMax) / 2;
- }
- return pairwiseDist[idxMid];
- } else {
- // with greeedy matching
- long int N = A.size() * B.size();
- std::vector<DistVerticesPair> pairwiseDist;
- pairwiseDist.reserve(N);
- Real maxMinDist {0.0};
- size_t idxA{0}, idxB{0};
- for(auto p_A : A) {
- Real minDist { std::numeric_limits<Real>::max() };
- idxB = 0;
- for(auto p_B : B) {
- Real d = distLInf(p_A, p_B);
- pairwiseDist.push_back( std::make_pair(d, std::make_pair(idxA, idxB) ) );
- if (useHeurMinIdx and p_A.isNormal()) {
- if (d < minDist)
- minDist = d;
- }
- idxB++;
- }
- if (useHeurMinIdx and p_A.isNormal() and minDist > maxMinDist) {
- maxMinDist = minDist;
- }
- idxA++;
- }
-
- auto compLambda = [](DistVerticesPair a, DistVerticesPair b)
- { return a.first < b.first;};
-
- std::sort(pairwiseDist.begin(),
- pairwiseDist.end(),
- compLambda);
-
- Real distEpsilon = std::numeric_limits<Real>::max();
- for(size_t k = 0; k < pairwiseDist.size() - 2; ++k) {
- auto diff = pairwiseDist[k+1].first - pairwiseDist[k].first;
- if ( diff > 1.0e-10 and diff < distEpsilon ) {
- distEpsilon = diff;
- }
- }
- distEpsilon /= 3.0;
-
- BoundMatchOracle<Real> oracle(A, B, distEpsilon, useRangeSearch);
-
- // construct greedy matching
- size_t numVert { A.size() };
- size_t numMatched { 0 };
- std::unordered_set<size_t> aTobMatched, bToaMatched;
- aTobMatched.reserve(numVert);
- bToaMatched.reserve(numVert);
- size_t distVecIdx {0};
- while( numMatched < numVert) {
- auto vertPair = pairwiseDist[distVecIdx++].second;
- //std::cout << "distVecIdx = " << distVecIdx << ", matched: " << numMatched << " out of " << numVert << std::endl;
- //std::cout << "vertex A idx = " << vertPair.first << ", B idx: " << vertPair.second << " out of " << numVert << std::endl;
- if ( aTobMatched.count(vertPair.first) == 0 and
- bToaMatched.count(vertPair.second) == 0 ) {
- aTobMatched.insert(vertPair.first);
- bToaMatched.insert(vertPair.second);
- numMatched++;
- }
- }
- size_t idxMax = distVecIdx-1;
- //std::cout << "idxMax = " << idxMax << ", size = " << pairwiseDist.size() << std::endl;
- // binary search
- size_t iterNum {0};
- size_t idxMin {0};
- if (useHeurMinIdx) {
- auto maxMinIter = std::equal_range(pairwiseDist.begin(),
- pairwiseDist.end(),
- std::make_pair(maxMinDist, std::make_pair(0,0)),
- compLambda);
- assert(maxMinIter.first != pairwiseDist.end());
- idxMin = maxMinIter.first - pairwiseDist.begin();
- //std::cout << "maxMinDist = " << maxMinDist << ", idxMin = " << idxMin << ", d = " << pairwiseDist[idxMin].first << std::endl;
- }
- size_t idxMid { (idxMin + idxMax) / 2 };
- while(idxMax > idxMin) {
- iterNum++;
- if (oracle.isMatchLess(pairwiseDist[idxMid].first)) {
- idxMax = idxMid;
- } else {
- if (idxMax - idxMin == 1)
- idxMin++;
- else
- idxMin = idxMid;
- }
- idxMid = (idxMin + idxMax) / 2;
- }
- return pairwiseDist[idxMid].first;
- }
- // stats
- /*
- // count number of edges
- // pairwiseDist is sorted, add edges of the same length
- int edgeNumber {idxMid};
- while(pairwiseDist[edgeNumber + 1] == pairwiseDist[edgeNumber])
- edgeNumber++;
- // add edges between diagonal points
- edgeNumber += N / 3;
- // output stats
- std::cout << idxMid << "\t" << N;
- std::cout << "\t" << iterNum;
- std::cout << "\t" << A.size() + B.size();
- std::cout << "\t" << edgeNumber << "\t";
- std::cout << (Real)(edgeNumber) / (Real)(A.size() + B.size()) << std::endl;
- */
-}
-
-// wrappers
-template<class Real>
-bool readDiagramPointSet(const std::string& fname, std::vector<std::pair<Real, Real>>& result)
-{
- int decPrecision;
- return readDiagramPointSet(fname.c_str(), result, decPrecision);
-}
-
-template<class Real>
-bool readDiagramPointSet(const char* fname, std::vector<std::pair<Real, Real>>& result)
-{
- int decPrecision;
- return readDiagramPointSet(fname, result, decPrecision);
-}
-
-template<class Real>
-bool readDiagramPointSet(const std::string& fname, std::vector<std::pair<Real, Real>>& result, int& decPrecision)
-{
- return readDiagramPointSet(fname.c_str(), result, decPrecision);
-}
-
-// reading function
-template<class Real>
-bool readDiagramPointSet(const char* fname, std::vector<std::pair<Real, Real>>& result, int& decPrecision)
-{
- size_t lineNumber { 0 };
- result.clear();
- std::ifstream f(fname);
- if (!f.good()) {
-#ifndef FOR_R_TDA
- std::cerr << "Cannot open file " << fname << std::endl;
-#endif
- return false;
- }
- std::string line;
- while(std::getline(f, line)) {
- lineNumber++;
- // process comments: remove everything after hash
- auto hashPos = line.find_first_of("#", 0);
- if( std::string::npos != hashPos) {
- line = std::string(line.begin(), line.begin() + hashPos);
- }
- if (line.empty()) {
- continue;
- }
- // trim whitespaces
- auto whiteSpaceFront = std::find_if_not(line.begin(),line.end(),isspace);
- auto whiteSpaceBack = std::find_if_not(line.rbegin(),line.rend(),isspace).base();
- if (whiteSpaceBack <= whiteSpaceFront) {
- // line consists of spaces only - move to the next line
- continue;
- }
- line = std::string(whiteSpaceFront,whiteSpaceBack);
- bool fracPart = false;
- int currDecPrecision = 0;
- for(auto c : line) {
- if (c == '.') {
- fracPart = true;
- } else if (fracPart) {
- if (isdigit(c)) {
- currDecPrecision++;
- } else {
- fracPart = false;
- if (currDecPrecision > decPrecision)
- decPrecision = currDecPrecision;
- currDecPrecision = 0;
- }
- }
- }
- Real x, y;
- std::istringstream iss(line);
- if (not(iss >> x >> y)) {
-#ifndef FOR_R_TDA
- std::cerr << "Error in file " << fname << ", line number " << lineNumber << ": cannot parse \"" << line << "\"" << std::endl;
-#endif
- return false;
- }
- if ( x != y ) {
- result.push_back(std::make_pair(x,y));
- } else {
-#ifndef FOR_R_TDA
-#ifndef VERBOSE_BOTTLENECK
- std::cerr << "Warning: in file " << fname << ", line number " << lineNumber << ", zero persistence point ignored: \"" << line << "\"" << std::endl;
-#endif
-#endif
- }
- }
- f.close();
- return true;
-}
-
} // end namespace bt
} // end namespace hera
#endif // HERA_BOTTLENECK_HPP