/* Copyright (c) 2016, M. Kerber, D. Morozov, A. Nigmetov All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. You are under no obligation whatsoever to provide any bug fixes, patches, or upgrades to the features, functionality or performance of the source code (Enhancements) to anyone; however, if you choose to make your Enhancements available either publicly, or directly to copyright holder, without imposing a separate written license agreement for such Enhancements, then you hereby grant the following license: a non-exclusive, royalty-free perpetual license to install, use, modify, prepare derivative works, incorporate into other computer software, distribute, and sublicense such enhancements or derivative works thereof, in binary and source code form. */ #include #include #include #include #include #include #include #include "def_debug_ws.h" #define PRINT_DETAILED_TIMING #ifdef FOR_R_TDA #include "Rcpp.h" #undef DEBUG_AUCTION #endif namespace hera { namespace ws { // ***************************** // AuctionRunnerGS // ***************************** template AuctionRunnerGS::AuctionRunnerGS(const PC& A, const PC& B, const AuctionParams& params) : bidders(A), items(B), num_bidders(A.size()), num_items(B.size()), items_to_bidders(B.size(), k_invalid_index), bidders_to_items(A.size(), k_invalid_index), wasserstein_power(params.wasserstein_power), delta(params.delta), internal_p(params.internal_p), initial_epsilon(params.initial_epsilon), epsilon_common_ratio(params.epsilon_common_ratio == 0.0 ? 5.0 : params.epsilon_common_ratio), max_num_phases(params.max_num_phases), tolerate_max_iter_exceeded(params.tolerate_max_iter_exceeded), dimension(params.dim), oracle(bidders, items, params) { assert(initial_epsilon >= 0.0 ); assert(epsilon_common_ratio >= 0.0 ); assert(A.size() == B.size()); } template void AuctionRunnerGS::assign_item_to_bidder(IdxType item_idx, IdxType bidder_idx) { num_rounds++; sanity_check(); // only unassigned bidders should submit bids and get items assert(bidders_to_items[bidder_idx] == k_invalid_index); IdxType old_item_owner = items_to_bidders[item_idx]; // set new owner bidders_to_items[bidder_idx] = item_idx; items_to_bidders[item_idx] = bidder_idx; // remove bidder from the list of unassigned bidders unassigned_bidders.erase(bidder_idx); // old owner becomes unassigned if (old_item_owner != k_invalid_index) { bidders_to_items[old_item_owner] = k_invalid_index; unassigned_bidders.insert(old_item_owner); } } template void AuctionRunnerGS::flush_assignment() { for(auto& b2i : bidders_to_items) { b2i = k_invalid_index; } for(auto& i2b : items_to_bidders) { i2b = k_invalid_index; } // we must flush assignment only after we got perfect matching assert(unassigned_bidders.empty()); // all bidders become unassigned for(size_t bidder_idx = 0; bidder_idx < num_bidders; ++bidder_idx) { unassigned_bidders.insert(bidder_idx); } assert(unassigned_bidders.size() == bidders.size()); oracle.adjust_prices(); } template void AuctionRunnerGS::run_auction_phases(const int max_num_phases, const Real _initial_epsilon) { relative_error = std::numeric_limits::max(); // choose some initial epsilon oracle.set_epsilon(_initial_epsilon); assert( oracle.get_epsilon() > 0 ); for(int phase_num = 0; phase_num < max_num_phases; ++phase_num) { flush_assignment(); run_auction_phase(); Real current_result = getDistanceToQthPowerInternal(); // Real current_result_1 = 0.0; // for(size_t i = 0; i < num_bidders; ++i) { // current_result_1 += oracle.traits.distance(bidders[i], items[bidders_to_items[i]]); // } // current_result = current_result_1; // assert(fabs(current_result - current_result_1) < 0.001); Real denominator = current_result - num_bidders * oracle.get_epsilon(); current_result = pow(current_result, 1.0 / wasserstein_power); if ( denominator <= 0 ) { ; } else { denominator = pow(denominator, 1.0 / wasserstein_power); Real numerator = current_result - denominator; relative_error = numerator / denominator; if (relative_error <= delta) { break; } } // decrease epsilon for the next iteration oracle.set_epsilon( oracle.get_epsilon() / epsilon_common_ratio ); } } template void AuctionRunnerGS::run_auction() { if (num_bidders == 1) { assign_item_to_bidder(0, 0); wasserstein_cost = get_item_bidder_cost(0,0); is_distance_computed = true; return; } double init_eps = ( initial_epsilon > 0.0 ) ? initial_epsilon : oracle.max_val_ / 4.0 ; run_auction_phases(max_num_phases, init_eps); is_distance_computed = true; if (relative_error > delta and not tolerate_max_iter_exceeded) { #ifndef FOR_R_TDA std::cerr << "Maximum iteration number exceeded, exiting. Current result is: "; std::cerr << pow(wasserstein_cost, 1.0/wasserstein_power) << std::endl; #endif throw std::runtime_error("Maximum iteration number exceeded"); } } template void AuctionRunnerGS::run_auction_phase() { num_phase++; //std::cout << "Entered run_auction_phase" << std::endl; do { size_t bidder_idx = *unassigned_bidders.begin(); auto optimal_bid = oracle.get_optimal_bid(bidder_idx); auto optimal_item_idx = optimal_bid.first; auto bid_value = optimal_bid.second; assign_item_to_bidder(optimal_bid.first, bidder_idx); oracle.set_price(optimal_item_idx, bid_value); //print_debug(); #ifdef FOR_R_TDA if ( num_rounds % 10000 == 0 ) { Rcpp::check_user_interrupt(); } #endif } while (not unassigned_bidders.empty()); //std::cout << "run_auction_phase finished" << std::endl; #ifdef DEBUG_AUCTION for(size_t bidder_idx = 0; bidder_idx < num_bidders; ++bidder_idx) { if ( bidders_to_items[bidder_idx] < 0 or bidders_to_items[bidder_idx] >= (IdxType)num_bidders) { std::cerr << "After auction terminated bidder " << bidder_idx; std::cerr << " has no items assigned" << std::endl; throw std::runtime_error("Auction did not give a perfect matching"); } } #endif } template R AuctionRunnerGS::get_item_bidder_cost(const size_t item_idx, const size_t bidder_idx, const bool tolerate_invalid_idx) const { if (item_idx != k_invalid_index and bidder_idx != k_invalid_index) { return std::pow(dist_lp(bidders[bidder_idx], items[item_idx], internal_p, dimension), wasserstein_power); } else { if (tolerate_invalid_idx) return R(0.0); else throw std::runtime_error("Invalid idx in get_item_bidder_cost, item_idx = " + std::to_string(item_idx) + ", bidder_idx = " + std::to_string(bidder_idx)); } } template R AuctionRunnerGS::getDistanceToQthPowerInternal() { sanity_check(); Real result = 0.0; //std::cout << "-------------------------------------------------------------------------\n"; for(size_t bIdx = 0; bIdx < num_bidders; ++bIdx) { result += get_item_bidder_cost(bidders_to_items[bIdx], bIdx); } //std::cout << "-------------------------------------------------------------------------\n"; wasserstein_cost = result; return result; } template R AuctionRunnerGS::get_wasserstein_distance() { assert(is_distance_computed); return pow(get_wasserstein_cost(), 1.0/wasserstein_power); } template R AuctionRunnerGS::get_wasserstein_cost() { assert(is_distance_computed); return wasserstein_cost; } // Debug routines template void AuctionRunnerGS::print_debug() { #ifdef DEBUG_AUCTION sanity_check(); std::cout << "**********************" << std::endl; std::cout << "Current assignment:" << std::endl; for(size_t idx = 0; idx < bidders_to_items.size(); ++idx) { std::cout << idx << " <--> " << bidders_to_items[idx] << std::endl; } std::cout << "Weights: " << std::endl; //for(size_t i = 0; i < num_bidders; ++i) { //for(size_t j = 0; j < num_items; ++j) { //std::cout << oracle.weight_matrix[i][j] << " "; //} //std::cout << std::endl; //} std::cout << "Prices: " << std::endl; for(const auto price : oracle.get_prices()) { std::cout << price << std::endl; } std::cout << "**********************" << std::endl; #endif } template void AuctionRunnerGS::sanity_check() { #ifdef DEBUG_AUCTION if (bidders_to_items.size() != num_bidders) { std::cerr << "Wrong size of bidders_to_items, must be " << num_bidders << ", is " << bidders_to_items.size() << std::endl; throw std::runtime_error("Wrong size of bidders_to_items"); } if (items_to_bidders.size() != num_bidders) { std::cerr << "Wrong size of items_to_bidders, must be " << num_bidders << ", is " << items_to_bidders.size() << std::endl; throw std::runtime_error("Wrong size of items_to_bidders"); } for(size_t bidder_idx = 0; bidder_idx < num_bidders; ++bidder_idx) { assert( bidders_to_items[bidder_idx] == k_invalid_index or ( bidders_to_items[bidder_idx] < (IdxType)num_items and bidders_to_items[bidder_idx] >= 0)); if ( bidders_to_items[bidder_idx] != k_invalid_index) { if ( std::count(bidders_to_items.begin(), bidders_to_items.end(), bidders_to_items[bidder_idx]) > 1 ) { std::cerr << "Item " << bidders_to_items[bidder_idx]; std::cerr << " appears in bidders_to_items more than once" << std::endl; throw std::runtime_error("Duplicate in bidders_to_items"); } if (items_to_bidders.at(bidders_to_items[bidder_idx]) != static_cast(bidder_idx)) { std::cerr << "Inconsitency: bidder_idx = " << bidder_idx; std::cerr << ", item_idx in bidders_to_items = "; std::cerr << bidders_to_items[bidder_idx]; std::cerr << ", bidder_idx in items_to_bidders = "; std::cerr << items_to_bidders[bidders_to_items[bidder_idx]] << std::endl; throw std::runtime_error("inconsistent mapping"); } } } for(IdxType item_idx = 0; item_idx < static_cast(num_bidders); ++item_idx) { assert( items_to_bidders[item_idx] == k_invalid_index or ( items_to_bidders[item_idx] < static_cast(num_items) and items_to_bidders[item_idx] >= 0)); if ( items_to_bidders.at(item_idx) != k_invalid_index) { // check for uniqueness if ( std::count(items_to_bidders.begin(), items_to_bidders.end(), items_to_bidders[item_idx]) > 1 ) { std::cerr << "Bidder " << items_to_bidders[item_idx]; std::cerr << " appears in items_to_bidders more than once" << std::endl; throw std::runtime_error("Duplicate in items_to_bidders"); } // check for consistency if (bidders_to_items.at(items_to_bidders.at(item_idx)) != static_cast(item_idx)) { std::cerr << "Inconsitency: item_idx = " << item_idx; std::cerr << ", bidder_idx in items_to_bidders = "; std::cerr << items_to_bidders[item_idx]; std::cerr << ", item_idx in bidders_to_items= "; std::cerr << bidders_to_items[items_to_bidders[item_idx]] << std::endl; throw std::runtime_error("inconsistent mapping"); } } } #endif } template void AuctionRunnerGS::print_matching() { #ifdef DEBUG_AUCTION sanity_check(); for(size_t bIdx = 0; bIdx < bidders_to_items.size(); ++bIdx) { if (bidders_to_items[bIdx] != k_invalid_index) { auto pA = bidders[bIdx]; auto pB = items[bidders_to_items[bIdx]]; std::cout << pA << " <-> " << pB << "+" << pow(dist_lp(pA, pB, internal_p, dimension), wasserstein_power) << std::endl; } else { assert(false); } } #endif } } // ws } // hera