summaryrefslogtreecommitdiff
path: root/matching/include/bifiltration.hpp
blob: 3d20516994287b0a52cdad0111fbbb95c43162ef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
namespace md {

    template<class Real>
    void Bifiltration<Real>::init()
    {
        auto lower_left = max_point<Real>();
        auto upper_right = min_point<Real>();
        for(const auto& simplex : simplices_) {
            lower_left = greatest_lower_bound<>(lower_left, simplex.position());
            upper_right = least_upper_bound<>(upper_right, simplex.position());
            maximal_dim_ = std::max(maximal_dim_, simplex.dim());
        }
        bounding_box_ = Box<Real>(lower_left, upper_right);
    }

    template<class Real>
    Bifiltration<Real>::Bifiltration(const std::string& fname)
    {
        std::ifstream ifstr {fname.c_str()};
        if (!ifstr.good()) {
            std::string error_message = "Cannot open file " + fname;
            std::cerr << error_message << std::endl;
            throw std::runtime_error(error_message);
        }

        BifiltrationFormat input_format;

        std::string s;

        while(ignore_line(s)) {
            std::getline(ifstr, s);
        }

        if (s == "bifiltration") {
            input_format = BifiltrationFormat::rivet;
        } else if (s == "bifiltration_phat_like") {
            input_format = BifiltrationFormat::phat_like;
        } else {
            std::cerr << "Unknown format: '" << s << "' in file " << fname << std::endl;
            throw std::runtime_error("unknown bifiltration format");
        }

        switch(input_format) {
            case BifiltrationFormat::rivet :
                rivet_format_reader(ifstr);
                break;
            case BifiltrationFormat::phat_like :
                phat_like_format_reader(ifstr);
                break;
        }

        ifstr.close();

        init();
    }

    template<class Real>
    void Bifiltration<Real>::rivet_format_reader(std::ifstream& ifstr)
    {
        std::string s;
        // read axes names, ignore them
        std::getline(ifstr, s);
        std::getline(ifstr, s);

        Index index = 0;
        while(std::getline(ifstr, s)) {
            if (!ignore_line(s)) {
                simplices_.emplace_back(index++, s, BifiltrationFormat::rivet);
            }
        }
    }

    template<class Real>
    void Bifiltration<Real>::phat_like_format_reader(std::ifstream& ifstr)
    {
        // read stream line by line; do not use >> operator
        std::string s;
        std::getline(ifstr, s);

        // first line contains number of simplices
        long n_simplices = std::stol(s);

        // all other lines represent a simplex
        Index index = 0;
        while(index < n_simplices) {
            std::getline(ifstr, s);
            if (!ignore_line(s)) {
                simplices_.emplace_back(index++, s, BifiltrationFormat::phat_like);
            }
        }
    }

    template<class Real>
    void Bifiltration<Real>::scale(Real lambda)
    {
        for(auto& s : simplices_) {
            s.scale(lambda);
        }
        init();
    }

    template<class Real>
    void Bifiltration<Real>::sanity_check() const
    {
#ifdef DEBUG
        // check that boundary has correct number of simplices,
        // each bounding simplex has correct dim
        // and appears in the filtration before the simplex it bounds
        for(const auto& s : simplices_) {
            assert(s.dim() >= 0);
            assert(s.dim() == 0 or s.dim() + 1 == (int) s.boundary().size());
            for(auto bdry_idx : s.boundary()) {
                Simplex bdry_simplex = simplices()[bdry_idx];
                assert(bdry_simplex.dim() == s.dim() - 1);
                assert(bdry_simplex.position().is_less(s.position(), false));
            }
        }
#endif
    }

    template<class Real>
    Diagram<Real> Bifiltration<Real>::weighted_slice_diagram(const DualPoint<Real>& line, int dim) const
    {
        DiagramKeeper<Real> dgm;

        // make a copy for now; I want slice_diagram to be const
        std::vector<Simplex<Real>> simplices(simplices_);

//        std::vector<Simplex> simplices;
//        simplices.reserve(simplices_.size() / 2);
//        for(const auto& s : simplices_) {
//            if (s.dim() <= dim + 1 and s.dim() >= dim)
//                simplices.emplace_back(s);
//        }

        for(auto& simplex : simplices) {
            Real value = line.weighted_push(simplex.position());
            simplex.set_value(value);
        }

        std::sort(simplices.begin(), simplices.end(),
                [](const Simplex<Real>& a, const Simplex<Real>& b) { return a.value() < b.value(); });
        std::map<Index, Index> index_map;
        for(Index i = 0; i < (int) simplices.size(); i++) {
            index_map[simplices[i].id()] = i;
        }

        phat::boundary_matrix<> phat_matrix;
        phat_matrix.set_num_cols(simplices.size());
        std::vector<Index> bd_in_slice_filtration;
        for(Index i = 0; i < (int) simplices.size(); i++) {
            phat_matrix.set_dim(i, simplices[i].dim());
            bd_in_slice_filtration.clear();
            //std::cout << "new col" << i << std::endl;
            for(int j = 0; j < (int) simplices[i].boundary().size(); j++) {
                // F[i] contains the indices of its facet wrt to the
                // original filtration. We have to express it, however,
                // wrt to the filtration along the slice. That is why
                // we need the index_map
                //std::cout << "Found " << F[i].bd[j] << ", returning " << index_map[F[i].bd[j]] << std::endl;
                bd_in_slice_filtration.push_back(index_map[simplices[i].boundary()[j]]);
            }
            std::sort(bd_in_slice_filtration.begin(), bd_in_slice_filtration.end());
            phat_matrix.set_col(i, bd_in_slice_filtration);
        }
        phat::persistence_pairs phat_persistence_pairs;
        phat::compute_persistence_pairs<phat::twist_reduction>(phat_persistence_pairs, phat_matrix);

        dgm.clear();
        constexpr Real real_inf = std::numeric_limits<Real>::infinity();
        for(long i = 0; i < (long) phat_persistence_pairs.get_num_pairs(); i++) {
            std::pair<phat::index, phat::index> new_pair = phat_persistence_pairs.get_pair(i);
            bool is_finite_pair = new_pair.second != phat::k_infinity_index;
            Real birth = simplices.at(new_pair.first).value();
            Real death = is_finite_pair ? simplices.at(new_pair.second).value() : real_inf;
            int dim = simplices[new_pair.first].dim();
            assert(dim + 1 == simplices[new_pair.second].dim());
            if (birth != death) {
                dgm.add_point(dim, birth, death);
            }
        }

        return dgm.get_diagram(dim);
    }

    template<class Real>
    Box<Real> Bifiltration<Real>::bounding_box() const
    {
        return bounding_box_;
    }

    template<class Real>
    Real Bifiltration<Real>::minimal_coordinate() const
    {
        return std::min(bounding_box_.lower_left().x, bounding_box_.lower_left().y);
    }

    template<class Real>
    void Bifiltration<Real>::translate(Real a)
    {
        bounding_box_.translate(a);
        for(auto& simplex : simplices_) {
            simplex.translate(a);
        }
    }

    template<class Real>
    Real Bifiltration<Real>::max_x() const
    {
        if (simplices_.empty())
            return 1;
        auto me = std::max_element(simplices_.cbegin(), simplices_.cend(),
                [](const auto& s_a, const auto& s_b) { return s_a.position().x < s_b.position().x; });
        assert(me != simplices_.cend());
        return me->position().x;
    }

    template<class Real>
    Real Bifiltration<Real>::max_y() const
    {
        if (simplices_.empty())
            return 1;
        auto me = std::max_element(simplices_.cbegin(), simplices_.cend(),
                [](const auto& s_a, const auto& s_b) { return s_a.position().y < s_b.position().y; });
        assert(me != simplices_.cend());
        return me->position().y;
    }

    template<class Real>
    Real Bifiltration<Real>::min_x() const
    {
        if (simplices_.empty())
            return 0;
        auto me = std::min_element(simplices_.cbegin(), simplices_.cend(),
                [](const auto& s_a, const auto& s_b) { return s_a.position().x < s_b.position().x; });
        assert(me != simplices_.cend());
        return me->position().x;
    }

    template<class Real>
    Real Bifiltration<Real>::min_y() const
    {
        if (simplices_.empty())
            return 0;
        auto me = std::min_element(simplices_.cbegin(), simplices_.cend(),
                [](const auto& s_a, const auto& s_b) { return s_a.position().y < s_b.position().y; });
        assert(me != simplices_.cend());
        return me->position().y;
    }

    template<class Real>
    void Bifiltration<Real>::add_simplex(Index _id, Point<Real> birth, int _dim, const Column& _bdry)
    {
        simplices_.emplace_back(_id, birth, _dim, _bdry);
    }

    template<class Real>
    void Bifiltration<Real>::save(const std::string& filename, md::BifiltrationFormat format)
    {
        switch(format) {
            case BifiltrationFormat::rivet:
                throw std::runtime_error("Not implemented");
                break;
            case BifiltrationFormat::phat_like: {
                std::ofstream f(filename);
                if (not f.good()) {
                    std::cerr << "Bifiltration::save: cannot open file " << filename << std::endl;
                    throw std::runtime_error("Cannot open file for writing ");
                }
                f << simplices_.size() << "\n";

                for(const auto& s : simplices_) {
                    f << s.dim() << " " << s.position().x << " " << s.position().y << " ";
                    for(int b : s.boundary()) {
                        f << b << " ";
                    }
                    f << std::endl;
                }

            }
                break;
        }
    }

    template<class Real>
    void Bifiltration<Real>::postprocess_rivet_format()
    {
        std::map<Column, Index> facets_to_ids;

        // fill the map
        for(Index i = 0; i < (Index) simplices_.size(); ++i) {
            assert(simplices_[i].id() == i);
            facets_to_ids[simplices_[i].vertices_] = i;
        }

//        for(const auto& s : simplices_) {
//            facets_to_ids[s] = s.id();
//        }

        // main loop
        for(auto& s : simplices_) {
            assert(not s.vertices_.empty());
            assert(s.facet_indices_.empty());
            Column facet_indices;
            for(Index i = 0; i <= s.dim(); ++i) {
                Column facet;
                for(Index j : s.vertices_) {
                    if (j != i)
                        facet.push_back(j);
                }
                auto facet_index = facets_to_ids.at(facet);
                facet_indices.push_back(facet_index);
            }
            s.facet_indices_ = facet_indices;
        } // loop over simplices
    }

    template<class Real>
    std::ostream& operator<<(std::ostream& os, const Bifiltration<Real>& bif)
    {
        os << "Bifiltration [" << std::endl;
        for(const auto& s : bif.simplices()) {
            os << s << std::endl;
        }
        os << "]" << std::endl;
        return os;
    }

    template<class Real>
    BifiltrationProxy<Real>::BifiltrationProxy(const Bifiltration<Real>& bif, int dim)
            :
            dim_(dim),
            bif_(bif)
    {
        cache_positions();
    }

    template<class Real>
    void BifiltrationProxy<Real>::cache_positions() const
    {
        cached_positions_.clear();
        for(const auto& simplex : bif_.simplices()) {
            if (simplex.dim() == dim_ or simplex.dim() == dim_ + 1)
                cached_positions_.push_back(simplex.position());
        }
    }

    template<class Real>
    PointVec<Real>
    BifiltrationProxy<Real>::positions() const
    {
        if (cached_positions_.empty()) {
            cache_positions();
        }
        return cached_positions_;
    }

    // translate all points by vector (a,a)
    template<class Real>
    void BifiltrationProxy<Real>::translate(Real a)
    {
        bif_.translate(a);
    }

    // return minimal value of x- and y-coordinates
    // among all simplices
    template<class Real>
    Real BifiltrationProxy<Real>::minimal_coordinate() const
    {
        return bif_.minimal_coordinate();
    }

    // return box that contains positions of all simplices
    template<class Real>
    Box<Real> BifiltrationProxy<Real>::bounding_box() const
    {
        return bif_.bounding_box();
    }

    template<class Real>
    Real BifiltrationProxy<Real>::max_x() const
    {
        return bif_.max_x();
    }

    template<class Real>
    Real BifiltrationProxy<Real>::max_y() const
    {
        return bif_.max_y();
    }

    template<class Real>
    Real BifiltrationProxy<Real>::min_x() const
    {
        return bif_.min_x();
    }

    template<class Real>
    Real BifiltrationProxy<Real>::min_y() const
    {
        return bif_.min_y();
    }


    template<class Real>
    Diagram<Real> BifiltrationProxy<Real>::weighted_slice_diagram(const DualPoint<Real>& slice) const
    {
        return bif_.weighted_slice_diagram(slice, dim_);
    }

}