summaryrefslogtreecommitdiff
path: root/matching/include/matching_distance.h
blob: e1679dc7a49b1d12e3ca42b10994a0d944e179f0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
#pragma once

#include <vector>
#include <limits>
#include <utility>
#include <ostream>
#include <chrono>
#include <tuple>
#include <algorithm>


#include "common_defs.h"
#include "cell_with_value.h"
#include "box.h"
#include "dual_point.h"
#include "dual_box.h"
#include "persistence_module.h"
#include "bifiltration.h"
#include "bottleneck.h"

namespace md {

#ifdef MD_PRINT_HEAT_MAP
    template<class Real>
    using HeatMap = std::map<DualPoint<Real>, Real>;

    template<class Real>
    using HeatMaps = std::map<int, HeatMap<Real>>;
#endif

    enum class BoundStrategy {
        bruteforce,
        local_dual_bound,
        local_dual_bound_refined,
        local_dual_bound_for_each_point,
        local_combined
    };

    enum class TraverseStrategy {
        depth_first,
        breadth_first,
        breadth_first_value,
        upper_bound
    };

    inline std::ostream& operator<<(std::ostream& os, const BoundStrategy& s)
    {
        switch(s) {
            case BoundStrategy::bruteforce :
                os << "bruteforce";
                break;
            case BoundStrategy::local_dual_bound :
                os << "local_grob";
                break;
            case BoundStrategy::local_combined :
                os << "local_combined";
                break;
            case BoundStrategy::local_dual_bound_refined :
                os << "local_refined";
                break;
            case BoundStrategy::local_dual_bound_for_each_point :
                os << "local_for_each_point";
                break;
            default:
                os << "FORGOTTEN BOUND STRATEGY";
        }
        return os;
    }

    inline std::ostream& operator<<(std::ostream& os, const TraverseStrategy& s)
    {
        switch(s) {
            case TraverseStrategy::depth_first :
                os << "DFS";
                break;
            case TraverseStrategy::breadth_first :
                os << "BFS";
                break;
            case TraverseStrategy::breadth_first_value :
                os << "BFS-VAL";
                break;
            case TraverseStrategy::upper_bound :
                os << "UB";
                break;
            default:
                os << "FORGOTTEN TRAVERSE STRATEGY";
        }
        return os;
    }

    inline std::istream& operator>>(std::istream& is, TraverseStrategy& s)
    {
        std::string ss;
        is >> ss;
        if (ss == "DFS") {
            s = TraverseStrategy::depth_first;
        } else if (ss == "BFS") {
            s = TraverseStrategy::breadth_first;
        } else if (ss == "BFS-VAL") {
            s = TraverseStrategy::breadth_first_value;
        } else if (ss == "UB") {
            s = TraverseStrategy::upper_bound;
        } else {
            throw std::runtime_error("UNKNOWN TRAVERSE STRATEGY");
        }
        return is;
    }


    inline std::istream& operator>>(std::istream& is, BoundStrategy& s)
    {
        std::string ss;
        is >> ss;
        if (ss == "bruteforce") {
            s = BoundStrategy::bruteforce;
        } else if (ss == "local_grob") {
            s = BoundStrategy::local_dual_bound;
        } else if (ss == "local_combined") {
            s = BoundStrategy::local_combined;
        } else if (ss == "local_refined") {
            s = BoundStrategy::local_dual_bound_refined;
        } else if (ss == "local_for_each_point") {
            s = BoundStrategy::local_dual_bound_for_each_point;
        } else {
            throw std::runtime_error("UNKNOWN BOUND STRATEGY");
        }
        return is;
    }

    inline BoundStrategy bs_from_string(std::string s)
    {
        std::stringstream ss(s);
        BoundStrategy result;
        ss >> result;
        return result;
    }

    inline TraverseStrategy ts_from_string(std::string s)
    {
        std::stringstream ss(s);
        TraverseStrategy result;
        ss >> result;
        return result;
    }

    template<class Real>
    struct CalculationParams {
        static constexpr int ALL_DIMENSIONS = -1;

        Real hera_epsilon {0.001}; // relative error in hera call
        Real delta {0.1}; // relative error for matching distance
        int max_depth {8}; // maximal number of refinenemnts
        int initialization_depth {2};
        int dim {0}; // in which dim to calculate the distance; use ALL_DIMENSIONS to get max over all dims
        BoundStrategy bound_strategy {BoundStrategy::local_combined};
        TraverseStrategy traverse_strategy {TraverseStrategy::breadth_first};
        bool tolerate_max_iter_exceeded {false};
        Real actual_error {std::numeric_limits<Real>::max()};
        int actual_max_depth {0};
        int n_hera_calls {0};  // for experiments only; is set in matching_distance function, input value is ignored

        // stop looping over points immediately, if current point's displacement is too large
        // to prune the cell
        // if true, cells are pruned immediately, and bounds may increase
        // (just return something large enough to not prune the cell)
        bool stop_asap { true };

        // print statistics on each quad-tree level
        bool print_stats { false };

#ifdef MD_PRINT_HEAT_MAP
        HeatMaps<Real> heat_maps;
#endif
    };


    template<class Real_, class DiagramProvider>
    class DistanceCalculator {

        using Real = Real_;
        using CellValueVector = std::vector<CellWithValue<Real>>;

    public:
        DistanceCalculator(const DiagramProvider& a,
                const DiagramProvider& b,
                CalculationParams<Real>& params);

        Real distance();

        int get_hera_calls_number() const;

#ifndef MD_TEST_CODE
    private:
#endif

        DiagramProvider module_a_;
        DiagramProvider module_b_;

        CalculationParams<Real>& params_;

        int n_hera_calls_;
        std::map<int, int> n_hera_calls_per_level_;
        Real distance_;

        // if calculate_on_intermediate, then weighted distance
        // will be calculated on centers of each grid in between
        CellValueVector get_refined_grid(int init_depth, bool calculate_on_intermediate, bool calculate_on_last = true);

        CellValueVector get_initial_dual_grid(Real& lower_bound);

#ifdef MD_PRINT_HEAT_MAP
        void heatmap_in_dimension(int dim, int depth);
#endif

        Real get_max_x(int module) const;

        Real get_max_y(int module) const;

        void set_cell_central_value(CellWithValue<Real>& dual_cell);

        Real get_distance();

        Real get_distance_pq();

        Real get_max_possible_value(const CellWithValue<Real>* first_cell_ptr, int n_cells);

        Real get_upper_bound(const CellWithValue<Real>& dual_cell, Real good_enough_upper_bound) const;

        Real get_single_dgm_bound(const CellWithValue<Real>& dual_cell, ValuePoint vp, int module,
                Real good_enough_value) const;

        // this bound depends only on dual box
        Real get_local_dual_bound(int module, const DualBox<Real>& dual_box) const;

        Real get_local_dual_bound(const DualBox<Real>& dual_box) const;

        // this bound depends only on dual box, is more accurate
        Real get_local_refined_bound(int module, const DualBox<Real>& dual_box) const;

        Real get_local_refined_bound(const DualBox<Real>& dual_box) const;

        Real get_good_enough_upper_bound(Real lower_bound) const;

        Real get_max_displacement_single_point(const CellWithValue<Real>& dual_cell, ValuePoint value_point,
                const Point<Real>& p) const;

        void check_upper_bound(const CellWithValue<Real>& dual_cell) const;

        Real distance_on_line(DualPoint<Real> line);
        Real distance_on_line_const(DualPoint<Real> line) const;

        Real current_error(Real lower_bound, Real upper_bound);
    };

    template<class Real>
    Real matching_distance(const Bifiltration<Real>& bif_a, const Bifiltration<Real>& bif_b,
            CalculationParams<Real>& params);

    template<class Real>
    Real matching_distance(const ModulePresentation<Real>& mod_a, const ModulePresentation<Real>& mod_b,
            CalculationParams<Real>& params);

    // for upper bound experiment
    struct UbExperimentRecord {
        double error;
        double lower_bound;
        double upper_bound;
        CellWithValue<double> cell;
        long long int time;
        long long int n_hera_calls;
    };

    inline std::ostream& operator<<(std::ostream& os, const UbExperimentRecord& r)
    {
        os << r.time << "\t" << r.n_hera_calls << "\t" << r.error << "\t" << r.lower_bound << "\t" << r.upper_bound;
        return os;
    }


    template<class K, class V>
    void print_map(const std::map<K, V>& dic)
    {
        for(const auto kv : dic) {
            fmt::print("{} -> {}\n", kv.first, kv.second);
        }
    }

} // namespace md

#include "matching_distance.hpp"