summaryrefslogtreecommitdiff
path: root/matching/include/matching_distance.hpp
blob: 7cff0736b253fdb34b2da2d265a59244c0fd8be9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
namespace md {

    template<class R, class T>
    void DistanceCalculator<R, T>::check_upper_bound(const CellWithValue<R>& dual_cell) const
    {
        spd::debug("Enter check_get_max_delta_on_cell");
        const int n_samples_lambda = 100;
        const int n_samples_mu = 100;
        DualBox<R> db = dual_cell.dual_box();
        R min_lambda = db.lambda_min();
        R max_lambda = db.lambda_max();
        R min_mu = db.mu_min();
        R max_mu = db.mu_max();

        R h_lambda = (max_lambda - min_lambda) / n_samples_lambda;
        R h_mu = (max_mu - min_mu) / n_samples_mu;
        for(int i = 1; i < n_samples_lambda; ++i) {
            for(int j = 1; j < n_samples_mu; ++j) {
                R lambda = min_lambda + i * h_lambda;
                R mu = min_mu + j * h_mu;
                DualPoint<R> l(db.axis_type(), db.angle_type(), lambda, mu);
                R other_result = distance_on_line_const(l);
                R diff = fabs(dual_cell.stored_upper_bound() - other_result);
                if (other_result > dual_cell.stored_upper_bound()) {
                    spd::error(
                            "in check_upper_bound, upper_bound = {}, other_result = {}, diff = {}\ndual_cell = {}",
                            dual_cell.stored_upper_bound(), other_result, diff, dual_cell);
                    throw std::runtime_error("Wrong delta estimate");
                }
            }
        }
        spd::debug("Exit check_get_max_delta_on_cell");
    }

    // for all lines l, l' inside dual box,
    // find the upper bound on the difference of weighted  pushes of p
    template<class R, class T>
    R
    DistanceCalculator<R, T>::get_max_displacement_single_point(const CellWithValue<R>& dual_cell, ValuePoint vp,
            const Point<R>& p) const
    {
        assert(p.x >= 0 && p.y >= 0);

#ifdef MD_DEBUG
        std::vector<long long int> debug_ids = {3, 13, 54, 218, 350, 382, 484, 795, 2040, 8415, 44076};
        bool debug = false; // std::find(debug_ids.begin(), debug_ids.end(), dual_cell.id) != debug_ids.end();
#endif
        DualPoint<R> line = dual_cell.value_point(vp);
        const R base_value = line.weighted_push(p);

        spd::debug("Enter get_max_displacement_single_point, p = {},\ndual_cell = {},\nline = {}, base_value = {}\n", p,
                dual_cell, line, base_value);

        R result = 0.0;
        for(DualPoint<R> dp : dual_cell.dual_box().critical_points(p)) {
            R dp_value = dp.weighted_push(p);
            spd::debug(
                    "In get_max_displacement_single_point, p = {}, critical dp = {},\ndp_value = {}, diff = {},\ndual_cell = {}\n",
                    p, dp, dp_value, fabs(base_value - dp_value), dual_cell);
            result = std::max(result, fabs(base_value - dp_value));
        }

#ifdef MD_DO_FULL_CHECK
        auto db = dual_cell.dual_box();
        std::uniform_real_distribution<R> dlambda(db.lambda_min(), db.lambda_max());
        std::uniform_real_distribution<R> dmu(db.mu_min(), db.mu_max());
        std::mt19937 gen(1);
        for(int i = 0; i < 1000; ++i) {
            R lambda = dlambda(gen);
            R mu = dmu(gen);
            DualPoint<R> dp_random { db.axis_type(), db.angle_type(), lambda, mu };
            R dp_value = dp_random.weighted_push(p);
            if (fabs(base_value - dp_value) > result) {
                spd::error("in get_max_displacement_single_point, p = {}, vp = {}\ndb = {}\nresult = {}, base_value = {}, dp_value = {}, dp_random = {}",
                        p, vp, db, result, base_value, dp_value, dp_random);
                throw std::runtime_error("error in get_max_displacement_single_value");
            }
        }
#endif

        return result;
    }

    template<class R, class T>
    typename DistanceCalculator<R, T>::CellValueVector DistanceCalculator<R, T>::get_initial_dual_grid(R& lower_bound)
    {
        CellValueVector result = get_refined_grid(params_.initialization_depth, false, true);

        lower_bound = -1;
        for(const auto& dc : result) {
            lower_bound = std::max(lower_bound, dc.max_corner_value());
        }

        assert(lower_bound >= 0);

        for(auto& dual_cell : result) {
            R good_enough_ub = get_good_enough_upper_bound(lower_bound);
            R max_value_on_cell = get_upper_bound(dual_cell, good_enough_ub);
            dual_cell.set_max_possible_value(max_value_on_cell);

#ifdef MD_DO_FULL_CHECK
            check_upper_bound(dual_cell);
#endif

            spd::debug("DEBUG INIT: added cell {}", dual_cell);
        }

        return result;
    }

    template<class R, class T>
    typename DistanceCalculator<R, T>::CellValueVector
    DistanceCalculator<R, T>::get_refined_grid(int init_depth, bool calculate_on_intermediate, bool calculate_on_last)
    {
        const R y_max = std::max(module_a_.max_y(), module_b_.max_y());
        const R x_max = std::max(module_a_.max_x(), module_b_.max_x());

        const R lambda_min = 0;
        const R lambda_max = 1;

        const R mu_min = 0;

        DualBox<R> x_flat(DualPoint<R>(AxisType::x_type, AngleType::flat, lambda_min, mu_min),
                DualPoint<R>(AxisType::x_type, AngleType::flat, lambda_max, x_max));

        DualBox<R>  x_steep(DualPoint<R>(AxisType::x_type, AngleType::steep, lambda_min, mu_min),
                DualPoint<R>(AxisType::x_type, AngleType::steep, lambda_max, x_max));

        DualBox<R> y_flat(DualPoint<R>(AxisType::y_type, AngleType::flat, lambda_min, mu_min),
                DualPoint<R>(AxisType::y_type, AngleType::flat, lambda_max, y_max));

        DualBox<R> y_steep(DualPoint<R>(AxisType::y_type, AngleType::steep, lambda_min, mu_min),
                DualPoint<R>(AxisType::y_type, AngleType::steep, lambda_max, y_max));

        CellWithValue<R> x_flat_cell(x_flat, 0);
        CellWithValue<R> x_steep_cell(x_steep, 0);
        CellWithValue<R> y_flat_cell(y_flat, 0);
        CellWithValue<R> y_steep_cell(y_steep, 0);

        if (init_depth == 0) {
            DualPoint<R> diagonal_x_flat(AxisType::x_type, AngleType::flat, 1, 0);

            R diagonal_value = distance_on_line(diagonal_x_flat);
            n_hera_calls_per_level_[0]++;

            x_flat_cell.set_value_at(ValuePoint::lower_right, diagonal_value);
            y_flat_cell.set_value_at(ValuePoint::lower_right, diagonal_value);
            x_steep_cell.set_value_at(ValuePoint::lower_right, diagonal_value);
            y_steep_cell.set_value_at(ValuePoint::lower_right, diagonal_value);
        }

#ifdef MD_DEBUG
        x_flat_cell.id = 1;
        x_steep_cell.id = 2;
        y_flat_cell.id = 3;
        y_steep_cell.id = 4;
        CellWithValue<R>::max_id = 4;
#endif

        CellValueVector result {x_flat_cell, x_steep_cell, y_flat_cell, y_steep_cell};

        if (init_depth == 0) {
            return result;
        }

        CellValueVector refined_result;

        for(int i = 1; i <= init_depth; ++i) {
            refined_result.clear();
            for(const auto& dual_cell : result) {
                for(auto refined_cell : dual_cell.get_refined_cells()) {
                    // we calculate for init_dept - 1, not init_depth,
                    // because we want the cells to have value at a corner
                    if ((i == init_depth - 1 and calculate_on_last) or calculate_on_intermediate)
                        set_cell_central_value(refined_cell);
                    refined_result.push_back(refined_cell);
                }
            }
            result = std::move(refined_result);
        }
        return result;
    }

    template<class R, class T>
    DistanceCalculator<R, T>::DistanceCalculator(const T& a,
            const T& b,
            CalculationParams<R>& params)
            :
            module_a_(a),
            module_b_(b),
            params_(params)
    {
        // make all coordinates non-negative
        auto min_coord = std::min(module_a_.minimal_coordinate(),
                module_b_.minimal_coordinate());
        spd::debug("in DistanceCalculator ctor, min_coord = {}", min_coord);
        if (min_coord < 0) {
            module_a_.translate(-min_coord);
            module_b_.translate(-min_coord);
        }

        assert(std::min({module_a_.min_x(), module_b_.min_x(), module_a_.min_y(),
                         module_b_.min_y()}) >= 0);

        spd::debug("DistanceCalculator constructed, module_a: max_x = {}, max_y = {}, module_b: max_x = {}, max_y = {}",
                module_a_.max_x(), module_a_.max_y(), module_b_.max_x(), module_b_.max_y());
    }

    template<class R, class T>
    R DistanceCalculator<R, T>::get_max_x(int module) const
    {
        return (module == 0) ? module_a_.max_x() : module_b_.max_x();
    }

    template<class R, class T>
    R DistanceCalculator<R, T>::get_max_y(int module) const
    {
        return (module == 0) ? module_a_.max_y() : module_b_.max_y();
    }

    template<class R, class T>
    R
    DistanceCalculator<R, T>::get_local_refined_bound(const DualBox<R>& dual_box) const
    {
        return get_local_refined_bound(0, dual_box) + get_local_refined_bound(1, dual_box);
    }

    template<class R, class T>
    R
    DistanceCalculator<R, T>::get_local_refined_bound(int module, const DualBox<R>& dual_box) const
    {
        spd::debug("Enter get_local_refined_bound, dual_box = {}", dual_box);
        R d_lambda = dual_box.lambda_max() - dual_box.lambda_min();
        R d_mu = dual_box.mu_max() - dual_box.mu_min();
        R result;
        if (dual_box.axis_type() == AxisType::x_type) {
            if (dual_box.is_flat()) {
                result = dual_box.lambda_max() * d_mu + (get_max_x(module) - dual_box.mu_min()) * d_lambda;
            } else {
                result = d_mu + get_max_y(module) * d_lambda;
            }
        } else {
            // y-type
            if (dual_box.is_flat()) {
                result = d_mu + get_max_x(module) * d_lambda;
            } else {
                // steep
                result = dual_box.lambda_max() * d_mu + (get_max_y(module) - dual_box.mu_min()) * d_lambda;
            }
        }
        return result;
    }

    template<class R, class T>
    R DistanceCalculator<R, T>::get_local_dual_bound(int module, const DualBox<R>& dual_box) const
    {
        R dlambda = dual_box.lambda_max() - dual_box.lambda_min();
        R dmu = dual_box.mu_max() - dual_box.mu_min();

        if (dual_box.is_flat()) {
            return get_max_x(module) * dlambda + dmu;
        } else {
            return get_max_y(module) * dlambda + dmu;
        }
    }

    template<class R, class T>
    R DistanceCalculator<R, T>::get_local_dual_bound(const DualBox<R>& dual_box) const
    {
        return get_local_dual_bound(0, dual_box) + get_local_dual_bound(1, dual_box);
    }

    template<class R, class T>
    R DistanceCalculator<R, T>::get_upper_bound(const CellWithValue<R>& dual_cell, R good_enough_ub) const
    {
        assert(good_enough_ub >= 0);

        switch(params_.bound_strategy) {
            case BoundStrategy::bruteforce:
                return std::numeric_limits<R>::max();

            case BoundStrategy::local_dual_bound:
                return dual_cell.min_value() + get_local_dual_bound(dual_cell.dual_box());

            case BoundStrategy::local_dual_bound_refined:
                return dual_cell.min_value() + get_local_refined_bound(dual_cell.dual_box());

            case BoundStrategy::local_combined: {
                R cheap_upper_bound = dual_cell.min_value() + get_local_refined_bound(dual_cell.dual_box());
                if (cheap_upper_bound < good_enough_ub) {
                    return cheap_upper_bound;
                } else {
                    [[fallthrough]];
                }
            }

            case BoundStrategy::local_dual_bound_for_each_point: {
                R result = std::numeric_limits<R>::max();
                for(ValuePoint vp : k_corner_vps) {
                    if (not dual_cell.has_value_at(vp)) {
                        continue;
                    }

                    R base_value = dual_cell.value_at(vp);
                    R bound_dgm_a = get_single_dgm_bound(dual_cell, vp, 0, good_enough_ub);

                    if (params_.stop_asap and bound_dgm_a + base_value >= good_enough_ub) {
                        // we want to return a valid upper bound, not just something that will prevent discarding the cell
                        // and we don't want to compute pushes for points in second bifiltration.
                        // so just return a constant time bound
                        return dual_cell.min_value() + get_local_refined_bound(dual_cell.dual_box());
                    }

                    R bound_dgm_b = get_single_dgm_bound(dual_cell, vp, 1,
                            std::max(R(0), good_enough_ub - bound_dgm_a));

                    result = std::min(result, base_value + bound_dgm_a + bound_dgm_b);

#ifdef MD_DEBUG
                    spd::debug("In get_upper_bound, cell = {}", dual_cell);
                    spd::debug("In get_upper_bound, vp = {}, base_value = {}, bound_dgm_a = {}, bound_dgm_b = {}, result = {}", vp, base_value, bound_dgm_a, bound_dgm_b, result);
#endif

                    if (params_.stop_asap and result < good_enough_ub) {
                        break;
                    }
                }
                return result;
            }
        }
        // to suppress compiler warning
        return std::numeric_limits<R>::max();
    }

    // find maximal displacement of weighted points of m for all lines in dual_box
    template<class R, class T>
    R
    DistanceCalculator<R, T>::get_single_dgm_bound(const CellWithValue<R>& dual_cell,
            ValuePoint vp,
            int module,
            R good_enough_value) const
    {
        R result = 0;
        Point<R> max_point;

        spd::debug(
                "Enter get_single_dgm_bound, module = {}, dual_cell = {}, vp = {}, good_enough_value = {}, stop_asap = {}\n",
                module, dual_cell, vp, good_enough_value, params_.stop_asap);

        const T& m = (module == 0) ? module_a_ : module_b_;
        for(const auto& position : m.positions()) {
            spd::debug("in get_single_dgm_bound, simplex = {}\n", position);

            R x = get_max_displacement_single_point(dual_cell, vp, position);

            spd::debug("In get_single_dgm_bound, point = {}, displacement = {}", position, x);

            if (x > result) {
                result = x;
                max_point = position;
                spd::debug("In get_single_dgm_bound, point = {}, result now = displacement = {}", position, x);
            }

            if (params_.stop_asap and result > good_enough_value) {
                // we want to return a valid upper bound,
                // now we just see it is worse than we need, but it may be even more
                // just return a valid upper bound
                spd::debug("result {} > good_enough_value {}, exit and return refined bound {}", result,
                        good_enough_value, get_local_refined_bound(dual_cell.dual_box()));
                result = get_local_refined_bound(dual_cell.dual_box());
                break;
            }
        }

        spd::debug("Exit get_single_dgm_bound,\ndual_cell = {}\nmodule = {}, result = {}, max_point = {}", dual_cell,
                module, result, max_point);

        return result;
    }

    template<class R, class T>
    R DistanceCalculator<R, T>::distance()
    {
        return get_distance_pq();
    }

    // calculate weighted bottleneneck distance between slices on line
    // increments hera calls counter
    template<class R, class T>
    R DistanceCalculator<R, T>::distance_on_line(DualPoint<R> line)
    {
        ++n_hera_calls_;
        R result = distance_on_line_const(line);
        return result;
    }

    template<class R, class T>
    R DistanceCalculator<R, T>::distance_on_line_const(DualPoint<R> line) const
    {
        // TODO: think about this - how to call Hera
        auto dgm_a = module_a_.weighted_slice_diagram(line);
        auto dgm_b = module_b_.weighted_slice_diagram(line);
        R result;
        if (params_.hera_epsilon > static_cast<R>(0)) {
            result = hera::bottleneckDistApprox(dgm_a, dgm_b, params_.hera_epsilon) / ( params_.hera_epsilon + 1);
        } else {
            result = hera::bottleneckDistExact(dgm_a, dgm_b);
        }
        if (n_hera_calls_ % 100 == 1) {
            spd::debug("Calling Hera, dgm_a.size = {}, dgm_b.size = {}, line = {}, result = {}", dgm_a.size(),
                    dgm_b.size(), line, result);
        } else {
            spd::debug("Calling Hera, dgm_a.size = {}, dgm_b.size = {}, line = {}, result = {}", dgm_a.size(),
                    dgm_b.size(), line, result);
        }
        return result;
    }

    template<class R, class T>
    R DistanceCalculator<R, T>::get_good_enough_upper_bound(R lower_bound) const
    {
        R result;
        // in upper_bound strategy we only prune cells if they cannot improve the lower bound,
        // otherwise the experiment is supposed to run indefinitely
        if (params_.traverse_strategy == TraverseStrategy::upper_bound) {
            result = lower_bound;
        } else {
            result = (1.0 + params_.delta) * lower_bound;
        }
        return result;
    }

    // helper function
    // calculate weighted bt distance on cell center,
    // assign distance value to cell, keep it in heat_map, and return
    template<class R, class T>
    void DistanceCalculator<R, T>::set_cell_central_value(CellWithValue<R>& dual_cell)
    {
        DualPoint<R> central_line {dual_cell.center()};

        spd::debug("In set_cell_central_value, processing dual cell = {}, line = {}", dual_cell.dual_box(),
                central_line);
        R new_value = distance_on_line(central_line);
        n_hera_calls_per_level_[dual_cell.level() + 1]++;
        dual_cell.set_value_at(ValuePoint::center, new_value);
        params_.actual_max_depth = std::max(params_.actual_max_depth, dual_cell.level() + 1);

#ifdef PRINT_HEAT_MAP
        if (params_.bound_strategy == BoundStrategy::bruteforce) {
            spd::debug("In set_cell_central_value, adding to heat_map pair {} - {}", dual_cell.center(), new_value);
            if (dual_cell.level() > params_.initialization_depth + 1
                    and params_.heat_maps[dual_cell.level()].count(dual_cell.center()) > 0) {
                auto existing = params_.heat_maps[dual_cell.level()].find(dual_cell.center());
                spd::debug("EXISTING: {} -> {}", existing->first, existing->second);
            }
            assert(dual_cell.level() <= params_.initialization_depth + 1
                    or params_.heat_maps[dual_cell.level()].count(dual_cell.center()) == 0);
            params_.heat_maps[dual_cell.level()][dual_cell.center()] = new_value;
        }
#endif
    }

    // quick-and-dirty hack to efficiently traverse priority queue with dual cells
    // returns maximal possible value on all cells in queue
    // assumes that the underlying container is vector!
    // cell_ptr: pointer to the first element in queue
    // n_cells: queue size
    template<class R, class T>
    R DistanceCalculator<R, T>::get_max_possible_value(const CellWithValue<R>* cell_ptr, int n_cells)
    {
        R result = (n_cells > 0) ? cell_ptr->stored_upper_bound() : 0;
        for(int i = 0; i < n_cells; ++i, ++cell_ptr) {
            result = std::max(result, cell_ptr->stored_upper_bound());
        }
        return result;
    }

    // helper function:
    // return current error from lower and upper bounds
    // and save it in params_ (hence not const)
    template<class R, class T>
    R DistanceCalculator<R, T>::current_error(R lower_bound, R upper_bound)
    {
        R current_error = (lower_bound > 0.0) ? (upper_bound - lower_bound) / lower_bound
                                                 : std::numeric_limits<R>::max();

        params_.actual_error = current_error;

        if (current_error < params_.delta) {
            spd::debug(
                    "Threshold achieved! bound_strategy = {}, traverse_strategy = {}, upper_bound = {}, current_error = {}",
                    params_.bound_strategy, params_.traverse_strategy, upper_bound, current_error);
        }
        return current_error;
    }

    // return matching distance
    // use priority queue to store dual cells
    // comparison function depends on the strategies in params_
    // ressets hera calls counter
    template<class R, class T>
    R DistanceCalculator<R, T>::get_distance_pq()
    {
        std::map<int, long> n_cells_considered;
        std::map<int, long> n_cells_pushed_into_queue;
        long int n_too_deep_cells = 0;
        std::map<int, long> n_cells_discarded;
        std::map<int, long> n_cells_pruned;

        spd::debug("Enter get_distance_pq, bound strategy = {}, traverse strategy = {}, stop_asap = {} ",
                params_.bound_strategy, params_.traverse_strategy, params_.stop_asap);

        std::chrono::high_resolution_clock timer;
        auto start_time = timer.now();

        n_hera_calls_ = 0;
        n_hera_calls_per_level_.clear();


        // if cell is too deep and is not pushed into queue,
        // we still need to take its max value into account;
        // the max over such cells is stored in max_result_on_too_fine_cells
        R upper_bound_on_deep_cells = -1;

        spd::debug("Started iterations in dual space, delta = {}, bound_strategy = {}", params_.delta,
                params_.bound_strategy);
        // user-defined less lambda function
        // to regulate priority queue depending on strategy
        auto dual_cell_less = [this](const CellWithValue<R>& a, const CellWithValue<R>& b) {

            int a_level = a.level();
            int b_level = b.level();
            R a_value = a.max_corner_value();
            R b_value = b.max_corner_value();
            R a_ub = a.stored_upper_bound();
            R b_ub = b.stored_upper_bound();
            if (this->params_.traverse_strategy == TraverseStrategy::upper_bound and
                    (not a.has_max_possible_value() or not b.has_max_possible_value())) {
                throw std::runtime_error("no upper bound on cell");
            }
            DualPoint<R> a_lower_left = a.dual_box().lower_left();
            DualPoint<R> b_lower_left = b.dual_box().lower_left();

            switch(this->params_.traverse_strategy) {
                // in both breadth_first searches we want coarser cells
                // to be processed first. Cells with smaller level must be larger,
                // hence the minus in front of level
                case TraverseStrategy::breadth_first:
                    return std::make_tuple(-a_level, a_lower_left)
                            < std::make_tuple(-b_level, b_lower_left);
                case TraverseStrategy::breadth_first_value:
                    return std::make_tuple(-a_level, a_value, a_lower_left)
                            < std::make_tuple(-b_level, b_value, b_lower_left);
                case TraverseStrategy::depth_first:
                    return std::make_tuple(a_value, a_level, a_lower_left)
                            < std::make_tuple(b_value, b_level, b_lower_left);
                case TraverseStrategy::upper_bound:
                    return std::make_tuple(a_ub, a_level, a_lower_left)
                            < std::make_tuple(b_ub, b_level, b_lower_left);
                default:
                    throw std::runtime_error("Forgotten case");
            }
        };

        std::priority_queue<CellWithValue<R>, CellValueVector, decltype(dual_cell_less)> dual_cells_queue(
                dual_cell_less);

        // weighted bt distance on the center of current cell
        R lower_bound = std::numeric_limits<R>::min();

        // init pq and lower bound
        for(auto& init_cell : get_initial_dual_grid(lower_bound)) {
            dual_cells_queue.push(init_cell);
        }

        R upper_bound = get_max_possible_value(&dual_cells_queue.top(), dual_cells_queue.size());

        std::vector<UbExperimentRecord> ub_experiment_results;

        while(not dual_cells_queue.empty()) {

            CellWithValue<R> dual_cell = dual_cells_queue.top();
            dual_cells_queue.pop();
            assert(dual_cell.has_corner_value()
                    and dual_cell.has_max_possible_value()
                    and dual_cell.max_corner_value() <= upper_bound);

            n_cells_considered[dual_cell.level()]++;

            bool discard_cell = false;

            if (not params_.stop_asap) {
                // if stop_asap is on, it is safer to never discard a cell
                if (params_.bound_strategy == BoundStrategy::bruteforce) {
                    discard_cell = false;
                } else if (params_.traverse_strategy == TraverseStrategy::upper_bound) {
                    discard_cell = (dual_cell.stored_upper_bound() <= lower_bound);
                } else {
                    discard_cell = (dual_cell.stored_upper_bound() <= (1.0 + params_.delta) * lower_bound);
                }
            }

            spd::debug(
                    "CURRENT CELL bound_strategy = {}, traverse_strategy = {}, dual cell: {}, upper_bound = {}, lower_bound = {}, current_error = {}, discard_cell = {}",
                    params_.bound_strategy, params_.traverse_strategy, dual_cell, upper_bound, lower_bound,
                    current_error(lower_bound, upper_bound), discard_cell);

            if (discard_cell) {
                n_cells_discarded[dual_cell.level()]++;
                continue;
            }

            // until now, dual_cell knows its value in one of its corners
            // new_value will be the weighted distance at its center
            set_cell_central_value(dual_cell);
            R new_value = dual_cell.value_at(ValuePoint::center);
            lower_bound = std::max(new_value, lower_bound);

            spd::debug("Processed cell = {}, weighted value = {}, lower_bound = {}", dual_cell, new_value, lower_bound);

            assert(upper_bound >= lower_bound);

            if (current_error(lower_bound, upper_bound) < params_.delta) {
                break;
            }

            // refine cell and push 4 smaller cells into queue
            for(auto refined_cell : dual_cell.get_refined_cells()) {

                if (refined_cell.num_values() == 0)
                    throw std::runtime_error("no value on cell");

                // if delta is smaller than good_enough_value, it allows to prune cell
                R good_enough_ub = get_good_enough_upper_bound(lower_bound);

                // upper bound of the parent holds for refined_cell
                // and can sometimes be smaller!
                R upper_bound_on_refined_cell = std::min(dual_cell.stored_upper_bound(),
                        get_upper_bound(refined_cell, good_enough_ub));

                spd::debug("upper_bound_on_refined_cell = {},  dual_cell.stored_upper_bound = {}, get_upper_bound = {}",
                        upper_bound_on_refined_cell, dual_cell.stored_upper_bound(),
                        get_upper_bound(refined_cell, good_enough_ub));

                refined_cell.set_max_possible_value(upper_bound_on_refined_cell);

#ifdef MD_DO_FULL_CHECK
                check_upper_bound(refined_cell);
#endif

                bool prune_cell = false;

                if (refined_cell.level() <= params_.max_depth) {
                    // cell might be added to queue; if it is not added, its maximal value can be safely ignored
                    if (params_.traverse_strategy == TraverseStrategy::upper_bound) {
                        prune_cell = (refined_cell.stored_upper_bound() <= lower_bound);
                    } else if (params_.bound_strategy != BoundStrategy::bruteforce) {
                        prune_cell = (refined_cell.stored_upper_bound() <= (1.0 + params_.delta) * lower_bound);
                    }
                    if (prune_cell)
                        n_cells_pruned[refined_cell.level()]++;
//                        prune_cell = (max_result_on_refined_cell <= lower_bound);
                } else {
                    // cell is too deep, it won't be added to queue
                    // we must memorize maximal value on this cell, because we won't see it anymore
                    prune_cell = true;
                    if (refined_cell.stored_upper_bound() > (1 + params_.delta) * lower_bound) {
                        n_too_deep_cells++;
                    }
                    upper_bound_on_deep_cells = std::max(upper_bound_on_deep_cells, refined_cell.stored_upper_bound());
                }

                spd::debug(
                        "In get_distance_pq, loop over refined cells, bound_strategy = {}, traverse_strategy = {}, refined cell: {}, max_value_on_cell = {}, upper_bound = {}, current_error = {}, prune_cell = {}",
                        params_.bound_strategy, params_.traverse_strategy, refined_cell,
                        refined_cell.stored_upper_bound(), upper_bound, current_error(lower_bound, upper_bound),
                        prune_cell);

                if (not prune_cell) {
                    n_cells_pushed_into_queue[refined_cell.level()]++;
                    dual_cells_queue.push(refined_cell);
                }
            } // end loop over refined cells

            if (dual_cells_queue.empty())
                upper_bound = std::max(upper_bound, upper_bound_on_deep_cells);
            else
                upper_bound = std::max(upper_bound_on_deep_cells,
                        get_max_possible_value(&dual_cells_queue.top(), dual_cells_queue.size()));

            if (params_.traverse_strategy == TraverseStrategy::upper_bound) {
                upper_bound = dual_cells_queue.top().stored_upper_bound();

                if (get_hera_calls_number() < 20 || get_hera_calls_number() % 20 == 0) {
                    auto elapsed = timer.now() - start_time;
                    UbExperimentRecord ub_exp_record;

                    ub_exp_record.error = current_error(lower_bound, upper_bound);
                    ub_exp_record.lower_bound = lower_bound;
                    ub_exp_record.upper_bound = upper_bound;
                    ub_exp_record.cell = dual_cells_queue.top();
                    ub_exp_record.n_hera_calls = n_hera_calls_;
                    ub_exp_record.time = std::chrono::duration_cast<std::chrono::milliseconds>(elapsed).count();

#ifdef MD_DO_CHECKS
                    if (ub_experiment_results.size() > 0) {
                        auto prev = ub_experiment_results.back();
                        if (upper_bound > prev.upper_bound) {
                            spd::error("ALARM 1, upper_bound = {}, top = {}, prev.ub = {}, prev cell = {}, lower_bound = {}, prev.lower_bound = {}",
                                    upper_bound, ub_exp_record.cell, prev.upper_bound, prev.cell, lower_bound, prev.lower_bound);
                            throw std::runtime_error("die");
                        }

                        if (lower_bound < prev.lower_bound) {
                            spd::error("ALARM 2, lower_bound = {}, prev.lower_bound = {}, top = {}, prev.ub = {}, prev cell = {}", lower_bound, prev.lower_bound, ub_exp_record.cell, prev.upper_bound, prev.cell);
                            throw std::runtime_error("die");
                        }
                    }
#endif

                    ub_experiment_results.emplace_back(ub_exp_record);

                    fmt::print(std::cerr, "[UB_EXPERIMENT]\t{}\n", ub_exp_record);
                }
            }

            assert(upper_bound >= lower_bound);

            if (current_error(lower_bound, upper_bound) < params_.delta) {
                break;
            }
        }

        params_.actual_error = current_error(lower_bound, upper_bound);

        if (n_too_deep_cells > 0) {
            spd::warn(
                    "Error not guaranteed, there were {} too deep cells. Actual error = {}. Increase max_depth or delta",
                    n_too_deep_cells, params_.actual_error);
        }
        // otherwise actual_error in params can be larger than delta,
        // but this is OK

        spd::debug("#############################################################");
        spd::debug(
                "Exiting get_distance_pq, bound_strategy = {}, traverse_strategy = {}, lower_bound = {}, upper_bound = {}, current_error = {}, actual_max_level = {}",
                params_.bound_strategy, params_.traverse_strategy, lower_bound,
                upper_bound, params_.actual_error, params_.actual_max_depth);

        spd::debug("#############################################################");

        if (params_.print_stats) {
            fmt::print("EXIT STATS, cells considered:\n");
            print_map(n_cells_considered);
            fmt::print("EXIT STATS, cells discarded:\n");
            print_map(n_cells_discarded);
            fmt::print("EXIT STATS, cells pruned:\n");
            print_map(n_cells_pruned);
            fmt::print("EXIT STATS, cells pushed:\n");
            print_map(n_cells_pushed_into_queue);
            fmt::print("EXIT STATS, hera calls:\n");
            print_map(n_hera_calls_per_level_);

            fmt::print("EXIT STATS, too deep cells with high value: {}\n", n_too_deep_cells);
        }

        return lower_bound;
    }

    template<class R, class T>
    int DistanceCalculator<R, T>::get_hera_calls_number() const
    {
        return n_hera_calls_;
    }

    template<class R>
    R matching_distance(const Bifiltration<R>& bif_a, const Bifiltration<R>& bif_b,
            CalculationParams<R>& params)
    {
        R result;
        // compute distance only in one dimension
        if (params.dim != CalculationParams<R>::ALL_DIMENSIONS) {
            BifiltrationProxy<R> bifp_a(bif_a, params.dim);
            BifiltrationProxy<R> bifp_b(bif_b, params.dim);
            DistanceCalculator<R, BifiltrationProxy<R>> runner(bifp_a, bifp_b, params);
            result = runner.distance();
            params.n_hera_calls = runner.get_hera_calls_number();
        } else {
            // compute distance in all dimensions, return maximal
            result = -1;
            for(int dim = 0; dim < std::max(bif_a.maximal_dim(), bif_b.maximal_dim()); ++dim) {
                BifiltrationProxy<R> bifp_a(bif_a, params.dim);
                BifiltrationProxy<R> bifp_b(bif_a, params.dim);
                DistanceCalculator<R, BifiltrationProxy<R>> runner(bifp_a, bifp_b, params);
                result = std::max(result, runner.distance());
                params.n_hera_calls += runner.get_hera_calls_number();
            }
        }
        return result;
    }


    template<class R>
    R matching_distance(const ModulePresentation<R>& mod_a, const ModulePresentation<R>& mod_b,
            CalculationParams<R>& params)
    {
        DistanceCalculator<R, ModulePresentation<R>> runner(mod_a, mod_b, params);
        R result = runner.distance();
        params.n_hera_calls = runner.get_hera_calls_number();
        return result;
    }
} // namespace md