summaryrefslogtreecommitdiff
path: root/matching/include/spdlog/fmt/bundled/format-inl.h
blob: 552c9430331696916c1114170a2a0e085bcc8519 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
// Formatting library for C++
//
// Copyright (c) 2012 - 2016, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.

#ifndef FMT_FORMAT_INL_H_
#define FMT_FORMAT_INL_H_

#include "format.h"

#include <string.h>

#include <cctype>
#include <cerrno>
#include <climits>
#include <cmath>
#include <cstdarg>
#include <cstddef>  // for std::ptrdiff_t
#include <cstring>  // for std::memmove
#if !defined(FMT_STATIC_THOUSANDS_SEPARATOR)
# include <locale>
#endif

#if FMT_USE_WINDOWS_H
# if !defined(FMT_HEADER_ONLY) && !defined(WIN32_LEAN_AND_MEAN)
#  define WIN32_LEAN_AND_MEAN
# endif
# if defined(NOMINMAX) || defined(FMT_WIN_MINMAX)
#  include <windows.h>
# else
#  define NOMINMAX
#  include <windows.h>
#  undef NOMINMAX
# endif
#endif

#if FMT_EXCEPTIONS
# define FMT_TRY try
# define FMT_CATCH(x) catch (x)
#else
# define FMT_TRY if (true)
# define FMT_CATCH(x) if (false)
#endif

#ifdef _MSC_VER
# pragma warning(push)
# pragma warning(disable: 4127)  // conditional expression is constant
# pragma warning(disable: 4702)  // unreachable code
// Disable deprecation warning for strerror. The latter is not called but
// MSVC fails to detect it.
# pragma warning(disable: 4996)
#endif

// Dummy implementations of strerror_r and strerror_s called if corresponding
// system functions are not available.
inline fmt::internal::null<> strerror_r(int, char *, ...) {
  return fmt::internal::null<>();
}
inline fmt::internal::null<> strerror_s(char *, std::size_t, ...) {
  return fmt::internal::null<>();
}

FMT_BEGIN_NAMESPACE

namespace {

#ifndef _MSC_VER
# define FMT_SNPRINTF snprintf
#else  // _MSC_VER
inline int fmt_snprintf(char *buffer, size_t size, const char *format, ...) {
  va_list args;
  va_start(args, format);
  int result = vsnprintf_s(buffer, size, _TRUNCATE, format, args);
  va_end(args);
  return result;
}
# define FMT_SNPRINTF fmt_snprintf
#endif  // _MSC_VER

#if defined(_WIN32) && defined(__MINGW32__) && !defined(__NO_ISOCEXT)
# define FMT_SWPRINTF snwprintf
#else
# define FMT_SWPRINTF swprintf
#endif // defined(_WIN32) && defined(__MINGW32__) && !defined(__NO_ISOCEXT)

typedef void (*FormatFunc)(internal::buffer &, int, string_view);

// Portable thread-safe version of strerror.
// Sets buffer to point to a string describing the error code.
// This can be either a pointer to a string stored in buffer,
// or a pointer to some static immutable string.
// Returns one of the following values:
//   0      - success
//   ERANGE - buffer is not large enough to store the error message
//   other  - failure
// Buffer should be at least of size 1.
int safe_strerror(
    int error_code, char *&buffer, std::size_t buffer_size) FMT_NOEXCEPT {
  FMT_ASSERT(buffer != FMT_NULL && buffer_size != 0, "invalid buffer");

  class dispatcher {
   private:
    int error_code_;
    char *&buffer_;
    std::size_t buffer_size_;

    // A noop assignment operator to avoid bogus warnings.
    void operator=(const dispatcher &) {}

    // Handle the result of XSI-compliant version of strerror_r.
    int handle(int result) {
      // glibc versions before 2.13 return result in errno.
      return result == -1 ? errno : result;
    }

    // Handle the result of GNU-specific version of strerror_r.
    int handle(char *message) {
      // If the buffer is full then the message is probably truncated.
      if (message == buffer_ && strlen(buffer_) == buffer_size_ - 1)
        return ERANGE;
      buffer_ = message;
      return 0;
    }

    // Handle the case when strerror_r is not available.
    int handle(internal::null<>) {
      return fallback(strerror_s(buffer_, buffer_size_, error_code_));
    }

    // Fallback to strerror_s when strerror_r is not available.
    int fallback(int result) {
      // If the buffer is full then the message is probably truncated.
      return result == 0 && strlen(buffer_) == buffer_size_ - 1 ?
            ERANGE : result;
    }

#if !FMT_MSC_VER
    // Fallback to strerror if strerror_r and strerror_s are not available.
    int fallback(internal::null<>) {
      errno = 0;
      buffer_ = strerror(error_code_);
      return errno;
    }
#endif

   public:
    dispatcher(int err_code, char *&buf, std::size_t buf_size)
      : error_code_(err_code), buffer_(buf), buffer_size_(buf_size) {}

    int run() {
      return handle(strerror_r(error_code_, buffer_, buffer_size_));
    }
  };
  return dispatcher(error_code, buffer, buffer_size).run();
}

void format_error_code(internal::buffer &out, int error_code,
                       string_view message) FMT_NOEXCEPT {
  // Report error code making sure that the output fits into
  // inline_buffer_size to avoid dynamic memory allocation and potential
  // bad_alloc.
  out.resize(0);
  static const char SEP[] = ": ";
  static const char ERROR_STR[] = "error ";
  // Subtract 2 to account for terminating null characters in SEP and ERROR_STR.
  std::size_t error_code_size = sizeof(SEP) + sizeof(ERROR_STR) - 2;
  typedef internal::int_traits<int>::main_type main_type;
  main_type abs_value = static_cast<main_type>(error_code);
  if (internal::is_negative(error_code)) {
    abs_value = 0 - abs_value;
    ++error_code_size;
  }
  error_code_size += internal::to_unsigned(internal::count_digits(abs_value));
  writer w(out);
  if (message.size() <= inline_buffer_size - error_code_size) {
    w.write(message);
    w.write(SEP);
  }
  w.write(ERROR_STR);
  w.write(error_code);
  assert(out.size() <= inline_buffer_size);
}

void report_error(FormatFunc func, int error_code,
                  string_view message) FMT_NOEXCEPT {
  memory_buffer full_message;
  func(full_message, error_code, message);
  // Use Writer::data instead of Writer::c_str to avoid potential memory
  // allocation.
  std::fwrite(full_message.data(), full_message.size(), 1, stderr);
  std::fputc('\n', stderr);
}
}  // namespace

FMT_FUNC size_t internal::count_code_points(basic_string_view<char8_t> s) {
  const char8_t *data = s.data();
  size_t num_code_points = 0;
  for (size_t i = 0, size = s.size(); i != size; ++i) {
    if ((data[i] & 0xc0) != 0x80)
      ++num_code_points;
  }
  return num_code_points;
}

#if !defined(FMT_STATIC_THOUSANDS_SEPARATOR)
namespace internal {

template <typename Locale>
locale_ref::locale_ref(const Locale &loc) : locale_(&loc) {
  static_assert(std::is_same<Locale, std::locale>::value, "");
}

template <typename Locale>
Locale locale_ref::get() const {
  static_assert(std::is_same<Locale, std::locale>::value, "");
  return locale_ ? *static_cast<const std::locale*>(locale_) : std::locale();
}

template <typename Char>
FMT_FUNC Char thousands_sep_impl(locale_ref loc) {
  return std::use_facet<std::numpunct<Char> >(
    loc.get<std::locale>()).thousands_sep();
}
}
#else
template <typename Char>
FMT_FUNC Char internal::thousands_sep_impl(locale_ref) {
  return FMT_STATIC_THOUSANDS_SEPARATOR;
}
#endif

FMT_FUNC void system_error::init(
    int err_code, string_view format_str, format_args args) {
  error_code_ = err_code;
  memory_buffer buffer;
  format_system_error(buffer, err_code, vformat(format_str, args));
  std::runtime_error &base = *this;
  base = std::runtime_error(to_string(buffer));
}

namespace internal {
template <typename T>
int char_traits<char>::format_float(
    char *buf, std::size_t size, const char *format, int precision, T value) {
  return precision < 0 ?
      FMT_SNPRINTF(buf, size, format, value) :
      FMT_SNPRINTF(buf, size, format, precision, value);
}

template <typename T>
int char_traits<wchar_t>::format_float(
    wchar_t *buf, std::size_t size, const wchar_t *format, int precision,
    T value) {
  return precision < 0 ?
      FMT_SWPRINTF(buf, size, format, value) :
      FMT_SWPRINTF(buf, size, format, precision, value);
}

template <typename T>
const char basic_data<T>::DIGITS[] =
    "0001020304050607080910111213141516171819"
    "2021222324252627282930313233343536373839"
    "4041424344454647484950515253545556575859"
    "6061626364656667686970717273747576777879"
    "8081828384858687888990919293949596979899";

#define FMT_POWERS_OF_10(factor) \
  factor * 10, \
  factor * 100, \
  factor * 1000, \
  factor * 10000, \
  factor * 100000, \
  factor * 1000000, \
  factor * 10000000, \
  factor * 100000000, \
  factor * 1000000000

template <typename T>
const uint32_t basic_data<T>::POWERS_OF_10_32[] = {
  1, FMT_POWERS_OF_10(1)
};

template <typename T>
const uint32_t basic_data<T>::ZERO_OR_POWERS_OF_10_32[] = {
  0, FMT_POWERS_OF_10(1)
};

template <typename T>
const uint64_t basic_data<T>::ZERO_OR_POWERS_OF_10_64[] = {
  0,
  FMT_POWERS_OF_10(1),
  FMT_POWERS_OF_10(1000000000ull),
  10000000000000000000ull
};

// Normalized 64-bit significands of pow(10, k), for k = -348, -340, ..., 340.
// These are generated by support/compute-powers.py.
template <typename T>
const uint64_t basic_data<T>::POW10_SIGNIFICANDS[] = {
  0xfa8fd5a0081c0288, 0xbaaee17fa23ebf76, 0x8b16fb203055ac76,
  0xcf42894a5dce35ea, 0x9a6bb0aa55653b2d, 0xe61acf033d1a45df,
  0xab70fe17c79ac6ca, 0xff77b1fcbebcdc4f, 0xbe5691ef416bd60c,
  0x8dd01fad907ffc3c, 0xd3515c2831559a83, 0x9d71ac8fada6c9b5,
  0xea9c227723ee8bcb, 0xaecc49914078536d, 0x823c12795db6ce57,
  0xc21094364dfb5637, 0x9096ea6f3848984f, 0xd77485cb25823ac7,
  0xa086cfcd97bf97f4, 0xef340a98172aace5, 0xb23867fb2a35b28e,
  0x84c8d4dfd2c63f3b, 0xc5dd44271ad3cdba, 0x936b9fcebb25c996,
  0xdbac6c247d62a584, 0xa3ab66580d5fdaf6, 0xf3e2f893dec3f126,
  0xb5b5ada8aaff80b8, 0x87625f056c7c4a8b, 0xc9bcff6034c13053,
  0x964e858c91ba2655, 0xdff9772470297ebd, 0xa6dfbd9fb8e5b88f,
  0xf8a95fcf88747d94, 0xb94470938fa89bcf, 0x8a08f0f8bf0f156b,
  0xcdb02555653131b6, 0x993fe2c6d07b7fac, 0xe45c10c42a2b3b06,
  0xaa242499697392d3, 0xfd87b5f28300ca0e, 0xbce5086492111aeb,
  0x8cbccc096f5088cc, 0xd1b71758e219652c, 0x9c40000000000000,
  0xe8d4a51000000000, 0xad78ebc5ac620000, 0x813f3978f8940984,
  0xc097ce7bc90715b3, 0x8f7e32ce7bea5c70, 0xd5d238a4abe98068,
  0x9f4f2726179a2245, 0xed63a231d4c4fb27, 0xb0de65388cc8ada8,
  0x83c7088e1aab65db, 0xc45d1df942711d9a, 0x924d692ca61be758,
  0xda01ee641a708dea, 0xa26da3999aef774a, 0xf209787bb47d6b85,
  0xb454e4a179dd1877, 0x865b86925b9bc5c2, 0xc83553c5c8965d3d,
  0x952ab45cfa97a0b3, 0xde469fbd99a05fe3, 0xa59bc234db398c25,
  0xf6c69a72a3989f5c, 0xb7dcbf5354e9bece, 0x88fcf317f22241e2,
  0xcc20ce9bd35c78a5, 0x98165af37b2153df, 0xe2a0b5dc971f303a,
  0xa8d9d1535ce3b396, 0xfb9b7cd9a4a7443c, 0xbb764c4ca7a44410,
  0x8bab8eefb6409c1a, 0xd01fef10a657842c, 0x9b10a4e5e9913129,
  0xe7109bfba19c0c9d, 0xac2820d9623bf429, 0x80444b5e7aa7cf85,
  0xbf21e44003acdd2d, 0x8e679c2f5e44ff8f, 0xd433179d9c8cb841,
  0x9e19db92b4e31ba9, 0xeb96bf6ebadf77d9, 0xaf87023b9bf0ee6b,
};

// Binary exponents of pow(10, k), for k = -348, -340, ..., 340, corresponding
// to significands above.
template <typename T>
const int16_t basic_data<T>::POW10_EXPONENTS[] = {
  -1220, -1193, -1166, -1140, -1113, -1087, -1060, -1034, -1007,  -980,  -954,
   -927,  -901,  -874,  -847,  -821,  -794,  -768,  -741,  -715,  -688,  -661,
   -635,  -608,  -582,  -555,  -529,  -502,  -475,  -449,  -422,  -396,  -369,
   -343,  -316,  -289,  -263,  -236,  -210,  -183,  -157,  -130,  -103,   -77,
    -50,   -24,     3,    30,    56,    83,   109,   136,   162,   189,   216,
    242,   269,   295,   322,   348,   375,   402,   428,   455,   481,   508,
    534,   561,   588,   614,   641,   667,   694,   720,   747,   774,   800,
    827,   853,   880,   907,   933,   960,   986,  1013,  1039,  1066
};

template <typename T> const char basic_data<T>::FOREGROUND_COLOR[] = "\x1b[38;2;";
template <typename T> const char basic_data<T>::BACKGROUND_COLOR[] = "\x1b[48;2;";
template <typename T> const char basic_data<T>::RESET_COLOR[] = "\x1b[0m";
template <typename T> const wchar_t basic_data<T>::WRESET_COLOR[] = L"\x1b[0m";

// A handmade floating-point number f * pow(2, e).
class fp {
 private:
  typedef uint64_t significand_type;

  // All sizes are in bits.
  static FMT_CONSTEXPR_DECL const int char_size =
    std::numeric_limits<unsigned char>::digits;
  // Subtract 1 to account for an implicit most significant bit in the
  // normalized form.
  static FMT_CONSTEXPR_DECL const int double_significand_size =
    std::numeric_limits<double>::digits - 1;
  static FMT_CONSTEXPR_DECL const uint64_t implicit_bit =
    1ull << double_significand_size;

 public:
  significand_type f;
  int e;

  static FMT_CONSTEXPR_DECL const int significand_size =
    sizeof(significand_type) * char_size;

  fp(): f(0), e(0) {}
  fp(uint64_t f_val, int e_val): f(f_val), e(e_val) {}

  // Constructs fp from an IEEE754 double. It is a template to prevent compile
  // errors on platforms where double is not IEEE754.
  template <typename Double>
  explicit fp(Double d) {
    // Assume double is in the format [sign][exponent][significand].
    typedef std::numeric_limits<Double> limits;
    const int double_size = static_cast<int>(sizeof(Double) * char_size);
    const int exponent_size =
      double_size - double_significand_size - 1;  // -1 for sign
    const uint64_t significand_mask = implicit_bit - 1;
    const uint64_t exponent_mask = (~0ull >> 1) & ~significand_mask;
    const int exponent_bias = (1 << exponent_size) - limits::max_exponent - 1;
    auto u = bit_cast<uint64_t>(d);
    auto biased_e = (u & exponent_mask) >> double_significand_size;
    f = u & significand_mask;
    if (biased_e != 0)
      f += implicit_bit;
    else
      biased_e = 1;  // Subnormals use biased exponent 1 (min exponent).
    e = static_cast<int>(biased_e - exponent_bias - double_significand_size);
  }

  // Normalizes the value converted from double and multiplied by (1 << SHIFT).
  template <int SHIFT = 0>
  void normalize() {
    // Handle subnormals.
    auto shifted_implicit_bit = implicit_bit << SHIFT;
    while ((f & shifted_implicit_bit) == 0) {
      f <<= 1;
      --e;
    }
    // Subtract 1 to account for hidden bit.
    auto offset = significand_size - double_significand_size - SHIFT - 1;
    f <<= offset;
    e -= offset;
  }

  // Compute lower and upper boundaries (m^- and m^+ in the Grisu paper), where
  // a boundary is a value half way between the number and its predecessor
  // (lower) or successor (upper). The upper boundary is normalized and lower
  // has the same exponent but may be not normalized.
  void compute_boundaries(fp &lower, fp &upper) const {
    lower = f == implicit_bit ?
          fp((f << 2) - 1, e - 2) : fp((f << 1) - 1, e - 1);
    upper = fp((f << 1) + 1, e - 1);
    upper.normalize<1>();  // 1 is to account for the exponent shift above.
    lower.f <<= lower.e - upper.e;
    lower.e = upper.e;
  }
};

// Returns an fp number representing x - y. Result may not be normalized.
inline fp operator-(fp x, fp y) {
  FMT_ASSERT(x.f >= y.f && x.e == y.e, "invalid operands");
  return fp(x.f - y.f, x.e);
}

// Computes an fp number r with r.f = x.f * y.f / pow(2, 64) rounded to nearest
// with half-up tie breaking, r.e = x.e + y.e + 64. Result may not be normalized.
FMT_API fp operator*(fp x, fp y);

// Returns cached power (of 10) c_k = c_k.f * pow(2, c_k.e) such that its
// (binary) exponent satisfies min_exponent <= c_k.e <= min_exponent + 3.
FMT_API fp get_cached_power(int min_exponent, int &pow10_exponent);

FMT_FUNC fp operator*(fp x, fp y) {
  // Multiply 32-bit parts of significands.
  uint64_t mask = (1ULL << 32) - 1;
  uint64_t a = x.f >> 32, b = x.f & mask;
  uint64_t c = y.f >> 32, d = y.f & mask;
  uint64_t ac = a * c, bc = b * c, ad = a * d, bd = b * d;
  // Compute mid 64-bit of result and round.
  uint64_t mid = (bd >> 32) + (ad & mask) + (bc & mask) + (1U << 31);
  return fp(ac + (ad >> 32) + (bc >> 32) + (mid >> 32), x.e + y.e + 64);
}

FMT_FUNC fp get_cached_power(int min_exponent, int &pow10_exponent) {
  const double one_over_log2_10 = 0.30102999566398114;  // 1 / log2(10)
  int index = static_cast<int>(std::ceil(
        (min_exponent + fp::significand_size - 1) * one_over_log2_10));
  // Decimal exponent of the first (smallest) cached power of 10.
  const int first_dec_exp = -348;
  // Difference between 2 consecutive decimal exponents in cached powers of 10.
  const int dec_exp_step = 8;
  index = (index - first_dec_exp - 1) / dec_exp_step + 1;
  pow10_exponent = first_dec_exp + index * dec_exp_step;
  return fp(data::POW10_SIGNIFICANDS[index], data::POW10_EXPONENTS[index]);
}

FMT_FUNC bool grisu2_round(
    char *buf, int &size, int max_digits, uint64_t delta,
    uint64_t remainder, uint64_t exp, uint64_t diff, int &exp10) {
  while (remainder < diff && delta - remainder >= exp &&
        (remainder + exp < diff || diff - remainder > remainder + exp - diff)) {
    --buf[size - 1];
    remainder += exp;
  }
  if (size > max_digits) {
    --size;
    ++exp10;
    if (buf[size] >= '5')
      return false;
  }
  return true;
}

// Generates output using Grisu2 digit-gen algorithm.
FMT_FUNC bool grisu2_gen_digits(
    char *buf, int &size, uint32_t hi, uint64_t lo, int &exp,
    uint64_t delta, const fp &one, const fp &diff, int max_digits) {
  // Generate digits for the most significant part (hi).
  while (exp > 0) {
    uint32_t digit = 0;
    // This optimization by miloyip reduces the number of integer divisions by
    // one per iteration.
    switch (exp) {
    case 10: digit = hi / 1000000000; hi %= 1000000000; break;
    case  9: digit = hi /  100000000; hi %=  100000000; break;
    case  8: digit = hi /   10000000; hi %=   10000000; break;
    case  7: digit = hi /    1000000; hi %=    1000000; break;
    case  6: digit = hi /     100000; hi %=     100000; break;
    case  5: digit = hi /      10000; hi %=      10000; break;
    case  4: digit = hi /       1000; hi %=       1000; break;
    case  3: digit = hi /        100; hi %=        100; break;
    case  2: digit = hi /         10; hi %=         10; break;
    case  1: digit = hi;              hi =           0; break;
    default:
      FMT_ASSERT(false, "invalid number of digits");
    }
    if (digit != 0 || size != 0)
      buf[size++] = static_cast<char>('0' + digit);
    --exp;
    uint64_t remainder = (static_cast<uint64_t>(hi) << -one.e) + lo;
    if (remainder <= delta || size > max_digits) {
      return grisu2_round(
            buf, size, max_digits, delta, remainder,
            static_cast<uint64_t>(data::POWERS_OF_10_32[exp]) << -one.e,
            diff.f, exp);
    }
  }
  // Generate digits for the least significant part (lo).
  for (;;) {
    lo *= 10;
    delta *= 10;
    char digit = static_cast<char>(lo >> -one.e);
    if (digit != 0 || size != 0)
      buf[size++] = static_cast<char>('0' + digit);
    lo &= one.f - 1;
    --exp;
    if (lo < delta || size > max_digits) {
      return grisu2_round(buf, size, max_digits, delta, lo, one.f,
                          diff.f * data::POWERS_OF_10_32[-exp], exp);
    }
  }
}

#if FMT_CLANG_VERSION
# define FMT_FALLTHROUGH [[clang::fallthrough]];
#elif FMT_GCC_VERSION >= 700
# define FMT_FALLTHROUGH [[gnu::fallthrough]];
#else
# define FMT_FALLTHROUGH
#endif

struct gen_digits_params {
  int num_digits;
  bool fixed;
  bool upper;
  bool trailing_zeros;
};

struct prettify_handler {
  char *data;
  ptrdiff_t size;
  buffer &buf;

  explicit prettify_handler(buffer &b, ptrdiff_t n)
    : data(b.data()), size(n), buf(b) {}
  ~prettify_handler() {
    assert(buf.size() >= to_unsigned(size));
    buf.resize(to_unsigned(size));
  }

  template <typename F>
  void insert(ptrdiff_t pos, ptrdiff_t n, F f) {
    std::memmove(data + pos + n, data + pos, to_unsigned(size - pos));
    f(data + pos);
    size += n;
  }

  void insert(ptrdiff_t pos, char c) {
    std::memmove(data + pos + 1, data + pos, to_unsigned(size - pos));
    data[pos] = c;
    ++size;
  }

  void append(ptrdiff_t n, char c) {
    std::uninitialized_fill_n(data + size, n, c);
    size += n;
  }

  void append(char c) { data[size++] = c; }

  void remove_trailing(char c) {
    while (data[size - 1] == c) --size;
  }
};

// Writes the exponent exp in the form "[+-]d{2,3}" to buffer.
template <typename Handler>
FMT_FUNC void write_exponent(int exp, Handler &&h) {
  FMT_ASSERT(-1000 < exp && exp < 1000, "exponent out of range");
  if (exp < 0) {
    h.append('-');
    exp = -exp;
  } else {
    h.append('+');
  }
  if (exp >= 100) {
    h.append(static_cast<char>('0' + exp / 100));
    exp %= 100;
    const char *d = data::DIGITS + exp * 2;
    h.append(d[0]);
    h.append(d[1]);
  } else {
    const char *d = data::DIGITS + exp * 2;
    h.append(d[0]);
    h.append(d[1]);
  }
}

struct fill {
  size_t n;
  void operator()(char *buf) const {
    buf[0] = '0';
    buf[1] = '.';
    std::uninitialized_fill_n(buf + 2, n, '0');
  }
};

// The number is given as v = f * pow(10, exp), where f has size digits.
template <typename Handler>
FMT_FUNC void grisu2_prettify(const gen_digits_params &params,
                              int size, int exp, Handler &&handler) {
  if (!params.fixed) {
    // Insert a decimal point after the first digit and add an exponent.
    handler.insert(1, '.');
    exp += size - 1;
    if (size < params.num_digits)
      handler.append(params.num_digits - size, '0');
    handler.append(params.upper ? 'E' : 'e');
    write_exponent(exp, handler);
    return;
  }
  // pow(10, full_exp - 1) <= v <= pow(10, full_exp).
  int full_exp = size + exp;
  const int exp_threshold = 21;
  if (size <= full_exp && full_exp <= exp_threshold) {
    // 1234e7 -> 12340000000[.0+]
    handler.append(full_exp - size, '0');
    int num_zeros = params.num_digits - full_exp;
    if (num_zeros > 0 && params.trailing_zeros) {
      handler.append('.');
      handler.append(num_zeros, '0');
    }
  } else if (full_exp > 0) {
    // 1234e-2 -> 12.34[0+]
    handler.insert(full_exp, '.');
    if (!params.trailing_zeros) {
      // Remove trailing zeros.
      handler.remove_trailing('0');
    } else if (params.num_digits > size) {
      // Add trailing zeros.
      ptrdiff_t num_zeros = params.num_digits - size;
      handler.append(num_zeros, '0');
    }
  } else {
    // 1234e-6 -> 0.001234
    handler.insert(0, 2 - full_exp, fill{to_unsigned(-full_exp)});
  }
}

struct char_counter {
  ptrdiff_t size;

  template <typename F>
  void insert(ptrdiff_t, ptrdiff_t n, F) { size += n; }
  void insert(ptrdiff_t, char) { ++size; }
  void append(ptrdiff_t n, char) { size += n; }
  void append(char) { ++size; }
  void remove_trailing(char) {}
};

// Converts format specifiers into parameters for digit generation and computes
// output buffer size for a number in the range [pow(10, exp - 1), pow(10, exp)
// or 0 if exp == 1.
FMT_FUNC gen_digits_params process_specs(const core_format_specs &specs,
                                         int exp, buffer &buf) {
  auto params = gen_digits_params();
  int num_digits = specs.precision >= 0 ? specs.precision : 6;
  switch (specs.type) {
  case 'G':
    params.upper = true;
    FMT_FALLTHROUGH
  case '\0': case 'g':
    params.trailing_zeros = (specs.flags & HASH_FLAG) != 0;
    if (-4 <= exp && exp < num_digits + 1) {
      params.fixed = true;
      if (!specs.type && params.trailing_zeros && exp >= 0)
        num_digits = exp + 1;
    }
    break;
  case 'F':
    params.upper = true;
    FMT_FALLTHROUGH
  case 'f': {
    params.fixed = true;
    params.trailing_zeros = true;
    int adjusted_min_digits = num_digits + exp;
    if (adjusted_min_digits > 0)
      num_digits = adjusted_min_digits;
    break;
  }
  case 'E':
    params.upper = true;
    FMT_FALLTHROUGH
  case 'e':
    ++num_digits;
    break;
  }
  params.num_digits = num_digits;
  char_counter counter{num_digits};
  grisu2_prettify(params, params.num_digits, exp - num_digits, counter);
  buf.resize(to_unsigned(counter.size));
  return params;
}

template <typename Double>
FMT_FUNC typename std::enable_if<sizeof(Double) == sizeof(uint64_t), bool>::type
    grisu2_format(Double value, buffer &buf, core_format_specs specs) {
  FMT_ASSERT(value >= 0, "value is negative");
  if (value == 0) {
    gen_digits_params params = process_specs(specs, 1, buf);
    const size_t size = 1;
    buf[0] = '0';
    grisu2_prettify(params, size, 0, prettify_handler(buf, size));
    return true;
  }

  fp fp_value(value);
  fp lower, upper;  // w^- and w^+ in the Grisu paper.
  fp_value.compute_boundaries(lower, upper);

  // Find a cached power of 10 close to 1 / upper and use it to scale upper.
  const int min_exp = -60;  // alpha in Grisu.
  int cached_exp = 0;  // K in Grisu.
  auto cached_pow = get_cached_power(  // \tilde{c}_{-k} in Grisu.
      min_exp - (upper.e + fp::significand_size), cached_exp);
  cached_exp = -cached_exp;
  upper = upper * cached_pow;  // \tilde{M}^+ in Grisu.
  --upper.f;  // \tilde{M}^+ - 1 ulp -> M^+_{\downarrow}.
  fp one(1ull << -upper.e, upper.e);
  // hi (p1 in Grisu) contains the most significant digits of scaled_upper.
  // hi = floor(upper / one).
  uint32_t hi = static_cast<uint32_t>(upper.f >> -one.e);
  int exp = count_digits(hi);  // kappa in Grisu.
  gen_digits_params params = process_specs(specs, cached_exp + exp, buf);
  fp_value.normalize();
  fp scaled_value = fp_value * cached_pow;
  lower = lower * cached_pow;  // \tilde{M}^- in Grisu.
  ++lower.f;  // \tilde{M}^- + 1 ulp -> M^-_{\uparrow}.
  uint64_t delta = upper.f - lower.f;
  fp diff = upper - scaled_value; // wp_w in Grisu.
  // lo (p2 in Grisu) contains the least significants digits of scaled_upper.
  // lo = supper % one.
  uint64_t lo = upper.f & (one.f - 1);
  int size = 0;
  if (!grisu2_gen_digits(buf.data(), size, hi, lo, exp, delta, one, diff,
                         params.num_digits)) {
    buf.clear();
    return false;
  }
  grisu2_prettify(params, size, cached_exp + exp, prettify_handler(buf, size));
  return true;
}

template <typename Double>
void sprintf_format(Double value, internal::buffer &buf,
                    core_format_specs spec) {
  // Buffer capacity must be non-zero, otherwise MSVC's vsnprintf_s will fail.
  FMT_ASSERT(buf.capacity() != 0, "empty buffer");

  // Build format string.
  enum { MAX_FORMAT_SIZE = 10}; // longest format: %#-*.*Lg
  char format[MAX_FORMAT_SIZE];
  char *format_ptr = format;
  *format_ptr++ = '%';
  if (spec.has(HASH_FLAG))
    *format_ptr++ = '#';
  if (spec.precision >= 0) {
    *format_ptr++ = '.';
    *format_ptr++ = '*';
  }
  if (std::is_same<Double, long double>::value)
    *format_ptr++ = 'L';
  *format_ptr++ = spec.type;
  *format_ptr = '\0';

  // Format using snprintf.
  char *start = FMT_NULL;
  for (;;) {
    std::size_t buffer_size = buf.capacity();
    start = &buf[0];
    int result = internal::char_traits<char>::format_float(
        start, buffer_size, format, spec.precision, value);
    if (result >= 0) {
      unsigned n = internal::to_unsigned(result);
      if (n < buf.capacity()) {
        buf.resize(n);
        break;  // The buffer is large enough - continue with formatting.
      }
      buf.reserve(n + 1);
    } else {
      // If result is negative we ask to increase the capacity by at least 1,
      // but as std::vector, the buffer grows exponentially.
      buf.reserve(buf.capacity() + 1);
    }
  }
}
}  // namespace internal

#if FMT_USE_WINDOWS_H

FMT_FUNC internal::utf8_to_utf16::utf8_to_utf16(string_view s) {
  static const char ERROR_MSG[] = "cannot convert string from UTF-8 to UTF-16";
  if (s.size() > INT_MAX)
    FMT_THROW(windows_error(ERROR_INVALID_PARAMETER, ERROR_MSG));
  int s_size = static_cast<int>(s.size());
  if (s_size == 0) {
    // MultiByteToWideChar does not support zero length, handle separately.
    buffer_.resize(1);
    buffer_[0] = 0;
    return;
  }

  int length = MultiByteToWideChar(
      CP_UTF8, MB_ERR_INVALID_CHARS, s.data(), s_size, FMT_NULL, 0);
  if (length == 0)
    FMT_THROW(windows_error(GetLastError(), ERROR_MSG));
  buffer_.resize(length + 1);
  length = MultiByteToWideChar(
    CP_UTF8, MB_ERR_INVALID_CHARS, s.data(), s_size, &buffer_[0], length);
  if (length == 0)
    FMT_THROW(windows_error(GetLastError(), ERROR_MSG));
  buffer_[length] = 0;
}

FMT_FUNC internal::utf16_to_utf8::utf16_to_utf8(wstring_view s) {
  if (int error_code = convert(s)) {
    FMT_THROW(windows_error(error_code,
        "cannot convert string from UTF-16 to UTF-8"));
  }
}

FMT_FUNC int internal::utf16_to_utf8::convert(wstring_view s) {
  if (s.size() > INT_MAX)
    return ERROR_INVALID_PARAMETER;
  int s_size = static_cast<int>(s.size());
  if (s_size == 0) {
    // WideCharToMultiByte does not support zero length, handle separately.
    buffer_.resize(1);
    buffer_[0] = 0;
    return 0;
  }

  int length = WideCharToMultiByte(
        CP_UTF8, 0, s.data(), s_size, FMT_NULL, 0, FMT_NULL, FMT_NULL);
  if (length == 0)
    return GetLastError();
  buffer_.resize(length + 1);
  length = WideCharToMultiByte(
    CP_UTF8, 0, s.data(), s_size, &buffer_[0], length, FMT_NULL, FMT_NULL);
  if (length == 0)
    return GetLastError();
  buffer_[length] = 0;
  return 0;
}

FMT_FUNC void windows_error::init(
    int err_code, string_view format_str, format_args args) {
  error_code_ = err_code;
  memory_buffer buffer;
  internal::format_windows_error(buffer, err_code, vformat(format_str, args));
  std::runtime_error &base = *this;
  base = std::runtime_error(to_string(buffer));
}

FMT_FUNC void internal::format_windows_error(
    internal::buffer &out, int error_code, string_view message) FMT_NOEXCEPT {
  FMT_TRY {
    wmemory_buffer buf;
    buf.resize(inline_buffer_size);
    for (;;) {
      wchar_t *system_message = &buf[0];
      int result = FormatMessageW(
          FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
          FMT_NULL, error_code, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),
          system_message, static_cast<uint32_t>(buf.size()), FMT_NULL);
      if (result != 0) {
        utf16_to_utf8 utf8_message;
        if (utf8_message.convert(system_message) == ERROR_SUCCESS) {
          writer w(out);
          w.write(message);
          w.write(": ");
          w.write(utf8_message);
          return;
        }
        break;
      }
      if (GetLastError() != ERROR_INSUFFICIENT_BUFFER)
        break;  // Can't get error message, report error code instead.
      buf.resize(buf.size() * 2);
    }
  } FMT_CATCH(...) {}
  format_error_code(out, error_code, message);
}

#endif  // FMT_USE_WINDOWS_H

FMT_FUNC void format_system_error(
    internal::buffer &out, int error_code, string_view message) FMT_NOEXCEPT {
  FMT_TRY {
    memory_buffer buf;
    buf.resize(inline_buffer_size);
    for (;;) {
      char *system_message = &buf[0];
      int result = safe_strerror(error_code, system_message, buf.size());
      if (result == 0) {
        writer w(out);
        w.write(message);
        w.write(": ");
        w.write(system_message);
        return;
      }
      if (result != ERANGE)
        break;  // Can't get error message, report error code instead.
      buf.resize(buf.size() * 2);
    }
  } FMT_CATCH(...) {}
  format_error_code(out, error_code, message);
}

FMT_FUNC void internal::error_handler::on_error(const char *message) {
  FMT_THROW(format_error(message));
}

FMT_FUNC void report_system_error(
    int error_code, fmt::string_view message) FMT_NOEXCEPT {
  report_error(format_system_error, error_code, message);
}

#if FMT_USE_WINDOWS_H
FMT_FUNC void report_windows_error(
    int error_code, fmt::string_view message) FMT_NOEXCEPT {
  report_error(internal::format_windows_error, error_code, message);
}
#endif

FMT_FUNC void vprint(std::FILE *f, string_view format_str, format_args args) {
  memory_buffer buffer;
  internal::vformat_to(buffer, format_str,
                       basic_format_args<buffer_context<char>::type>(args));
  std::fwrite(buffer.data(), 1, buffer.size(), f);
}

FMT_FUNC void vprint(std::FILE *f, wstring_view format_str, wformat_args args) {
  wmemory_buffer buffer;
  internal::vformat_to(buffer, format_str, args);
  std::fwrite(buffer.data(), sizeof(wchar_t), buffer.size(), f);
}

FMT_FUNC void vprint(string_view format_str, format_args args) {
  vprint(stdout, format_str, args);
}

FMT_FUNC void vprint(wstring_view format_str, wformat_args args) {
  vprint(stdout, format_str, args);
}

FMT_END_NAMESPACE

#ifdef _MSC_VER
# pragma warning(pop)
#endif

#endif  // FMT_FORMAT_INL_H_