
NORTHWESTERN UNIVERSITYDepartment of Electrical Engineeringand Computer Science
L-BFGS-B: FORTRAN SUBROUTINES FOR LARGE-SCALEBOUND CONSTRAINED OPTIMIZATIONbyCiyou Zhu1, Richard H. Byrd2, Peihuang Lu1 and Jorge Nocedal1December 31, 1994(Revised October 8, 1996)ABSTRACTL-BFGS-B is a limited memory algorithm for solving large nonlinear optimization problemssubject to simple bounds on the variables. It is intended for problems in which informa-tion on the Hessian matrix is di�cult to obtain, or for large dense problems. L-BFGS-Bcan also be used for unconstrained problems, and in this case performs similarly to itspredecessor, algorithm L-BFGS (Harwell routine VA15). The algorithm is implemented inFORTRAN 77.Categories and Subject Descriptors: G.1.6 [Numerical Analysis]: Optimization { gradientmethods; G.4 [Mathematics of Computing]: Mathematical Software.General Terms: AlgorithmsAdditional KeyWords and Phrases: variable metric method, large-scale optimization, nonlinearoptimization, limited memory method.

1 Department of Electrical Engineering and Computer Science, Northwestern University, Evanston Il 60208.These authors were supported by National Science Foundation Grants CCR-9101359 and ASC-9213149, and byDepartment of Energy Grant DE-FG02-87ER25047-A004.2 Computer Science Department, University of Colorado at Boulder, Boulder Colorado 80309. This authorwas supported by NSF grant CCR-9101795, ARO grant DAAL 03-91-G-0151, and AFOSR grant AFOSR-90-0109. 1



1. Introduction.The purpose of algorithm L-BFGS-B is to minimize a nonlinear function of n variables,min f(x)subject to l � x � u;where the vectors l and u represent lower and upper bounds on the variables. Not all thevariables need to have bounds; in fact the algorithm is also appropriate and e�cient for solvingunconstrained problems. The user must supply the gradient g, but knowledge about the Hessianmatrix of f is not required. For this reason the algorithm can be useful for solving largeproblems in which the Hessian is di�cult to compute or is dense.The algorithm is described in detail in [8], and proceeds roughly as follows. At each iterationa limited memory BFGS approximation to the Hessian is updated. This limited memorymatrix is used to de�ne a quadratic model of the objective function f . A search direction isthen computed using a two-stage approach: �rst, the gradient projection method [15, 3, 18, 9]is used to identify a set of active variables, i.e., variables that will be held at their bounds;then the quadratic model is approximately minimized with respect to the free variables. Thesearch direction is de�ned to be the vector leading from the current iterate to this approximateminimizer. Finally a line search is performed along the search direction using the subroutinedescribed in [17]. A novel feature of the algorithm is that the limited memory BFGS matricesare represented in a compact form [7] that is e�cient for bound constrained problems.The user can control the amount of storage required by L-BFGS-B by selecting a parameterm that determines the number of BFGS corrections saved. The algorithm requires roughly(12+ 2m)n storage locations, and since small values of m (say 3 � m � 20) are recommended,it can be used to solve very large problems. The computational cost of one iteration of thealgorithm is modest, ranging from 4mn + n multiplications when no bounds are active, toapproximately m2n multiplications when all variables are at their bounds.L-BFGS-B is an extension of the limited memory algorithm (L-BFGS) for unconstrainedoptimization described in [16] and implemented as Harwell routine VA15 [12]. The mainimprovement is the ability of L-BFGS-B to deal with bounds on the variables. Even thoughthis requirement makes the new algorithm far more complex than its predecessor, the twocodes perform similarly on unconstrained problems. Therefore L-BFGS-B could be consideredto supersede L-BFGS { except for one fact that can be important in some applications:L-BFGS-B requires 8 more n-vectors of storage.L-BFGS-B is, at present, the only limited memory quasi-Newton algorithm capable ofhandling bounds on the variables; other published codes [5], [6], [13], [12] are only able tosolve unconstrained problems. We note also that the nonlinear conjugate gradient method[14], which is used for solving many large unconstrained problems, has not been adequatelyextended to handle bounds on the variables, and L-BFGS-B can be used in its place.The advantages of L-BFGS-B are: (i) the code is easy to use, and the user need not supplyinformation about the Hessian matrix or the structure of the objective function; (ii) the storagerequirements are modest and can be controlled by the user; (iii) the cost of the iteration islow, and is independent of the properties of the objective function. As a result, L-BFGS-B isrecommended for large problems in which the Hessian matrix is not sparse or is di�cult tocompute.However L-BFGS-B su�ers from the following drawbacks: (i) it is not rapidly convergent,and on di�cult problems can take a large number of function evaluations to converge; (ii)2



on highly ill-conditioned problems it may fail to obtain high accuracy in the solution; (iii) itcannot make use of knowledge about the structure of the problem to accelerate convergence.Even though the algorithm implemented in the FORTRAN code is essentially the same asthe one described in [8], it di�ers in a few important details. As a result of these improvements,the operation counts given in [8] slightly overestimate the computational work of L-BFGS-B;we return to this in Section 4. Several new limited memory algorithms have recently beenproposed that reduce the amount of storage needed; see for example [20]. We have not followedsuch an approach because it is not clear at present that their performance is as good as thatof L-BFGS-B.2. The Drivers.L-BFGS-B is written in FORTRAN 77, in double precision. The user is required to calculatethe function value f and its gradient g. In order to allow the user complete control overthese computations, reverse communication is used. Thus, the routine setulb.f must be calledrepeatedly from the user's program.The simplest way to use the code is to modify one of the sample drivers provided in thepackage. Most users will only need to make a few changes to one of the drivers to run theirapplications.driver1.f is the simplest driver. It demonstrates how to solve a problem using default pa-rameters. We recommend that every user of L-BFGS-B read this driver. It gives a goodidea of how the code works, and at the end of the program there is a detailed descriptionof the parameters used in L-BFGS-B.driver2.f is a more sophisticated driver. It illustrates various ways of terminating the run,and alternative ways of generating output. This driver is designed for users who needspecially formatted output or for users who wish to have more control over the executionof the run.driver3.f is a time-controlled driver. It shows how to terminate a run after some prescribedCPU time has elapsed, and how to print the desired information before exiting. Whenrunning very time-consuming applications the user may wish to impose a limit on CPUtime. Terminating the run in this way, however, will not produce the �nal output of therun. This driver shows how to generate all desired output in this case.3. Termination and Error Messages.The code may terminate for a variety of reasons described in this section. First of all theuser can force termination by including an appropriate instruction in the driver; see for exampledriver2. The code may also terminate if one of the two built-in stopping tests is activated.The �rst stopping test is (fk � fk+1)max(jfk+1j; jfkj; 1) � factr�epsmch ; (1)where epsmch is the machine precision, which is automatically generated by the code, andfactr is a parameter controlled by the user. This test is designed to terminate the run when3



the change in the objective function f is su�ciently small. Typical values for factr on acomputer with 15 digits of accuracy in double precision are: factr=1.d+12 for low accuracy;factr=1.d+7 for moderate accuracy; factr=1.d+1 for extremely high accuracy. If factr=0,the test will stop the algorithm only if the objective function remains unchanged after oneiteration.The second built-in stopping test is based on the projected gradient. This is the projectionof the gradient vector onto the space tangent to the active bounds, and it must equal zero at alocal minimizer of the bound constrained problem. The test is designed to terminate the runwhen the (in�nity) norm of the projected gradient becomes su�ciently small,kproj gk1 � pgtol: (2)The parameter pgtol is controlled by the user, but the test will be hard to satisfy if pgtol isset smaller than the square root of machine precision.Both tests can be almost disabled by setting factr = pgtol = 0.The code may also terminate because an input error has been detected, or because nofurther progress can be made during the line search, as described in Section 4.4. Implementation.The algorithm implemented in L-BFGS-B is described in detail in [8]. However a fewadditions and modi�cations were made during the development of the code.Section 5 of [8] describes three methods for performing the subspace minimization: directprimal, primal CG, and dual. Extensive numerical tests since the publication of [8] indicatethat the CG approach is the least e�ective. Moreover we were able to show that the primal anddual approaches can be implemented in a uni�ed framework in which they are very similar;they require essentially the same amount of computation and perform equally well in practice.Tests supporting these observations are reported in the technical report [21], an earlier versionof this paper. Due to this, the L-BFGS-B code uses only the primal method for subspaceminimization.There is another signi�cant di�erence between L-BFGS-B and the algorithm describedin [8], but it occurs at a fairly low level and is of interest only to those readers wishing tounderstand the code in detail. The de�nition of the reduced Hessian matrix given in equation(5.10) of [8] makes use of the matrix(I � 1�MW TZZTW )�1M:This matrix can be written as the inverse of264 �D � 1�Y TZZTY LTA �RTZLA �RZ �STAATS 375 ;where LA is the strict lower triangle of STAATS and RZ is the upper triangle of Y TZZTY:Although this matrix is not positive de�nite, it can be factorized symmetrically by usingCholesky factorizations of the submatrices, and we do so in the L-BFGS-B code.Next we describe several devices for dealing with failures of the code and for trying toimprove performance in the region where rounding errors begin to dominate the computation.The steplength parameter is computed by a procedure using the line search program of Mor�e4



and Thuente [17]. If the line search is unable to �nd a point with a su�ciently lower valueof the objective after 20 evaluations of the objective function, we conclude that the currentdirection is not useful. In this case all correction vectors forming the limited memory matrix arediscarded and the iteration is restarted along the steepest descent direction. If the line searchfails along this steepest descent direction, the algorithm terminates with an error message. Thistype of failure will usually occur only if the user has speci�ed high accuracy in the solutionand L-BFGS-B is having di�culties meeting this accuracy. Our restarting strategy sometimesleads to successful termination in these di�cult cases { but not always.Similarly, if during the course of the iteration the L-BFGS-B matrix, or a related submatrix,becomes singular or inde�nite, all correction vectors are discarded and the iteration is restartedalong the steepest descent direction. This device is also used if the search direction is not adescent direction (i.e. if gTd � 0).We emphasize that all the di�culties just described occur only when rounding errors beginto dominate the computation.Machine and Scale Dependencies.L-BFGS-B computes the machine precision epsmch by means of the routine dpmeps fromMINPACK-2 [2]. The machine precision epsmch is used twice in the algorithm: in the stoppingtest (1) and in the skipping criterion for BFGS updating described now. The line search ofMor�e and Thuente [17] enforces the Wolfe conditions whenever no bound is encountered inthe line search. In particular, if no bounds are hit we always have yTk sk � 0:9(�gTk sk), whereyk = gk+1 � gk and sk = xk+1 � xk. If a bound is hit, it may not be possible to satisfythis condition (see [11]), and to ensure that the Hessian approximation is su�ciently positivede�nite. We therefore skip the BFGS update ifyTk sk�gTk sk � epsmch: (3)Our numerical experience indicates that skipping occurs rarely. The test (3) is rather weak,and it is possible that in �nite precision a small value of yTk sk could result in the BFGS updatebeing unde�ned or not positive de�nite. In such cases the restarting mechanism described abovewould allow the algorithm to continue. We have never observed any numerical inde�nitenessthat gives rise to a nondescent direction.E�ort was taken to ensure that L-BFGS-B is as scale-invariant as possible. However com-plete scale-invariance was not possible to achieve; indeed the limited memory algorithm itselfis not invariant to linear transformations in the variables. However, the algorithm is invariantwith respect to scalar multiples of the variables and the objective function, and we have beenable to maintain that invariance in the code with only a few exceptions. One of them occursin the �rst iteration, where the step is quite dependent on scaling of the variables.Note that (2) and, when jf j is small, (1) are scale-dependent: if f is multiplied by a constantand the code is re-run, then termination may occur at a di�erent solution point for positivefactr and pgtol.5. Numerical Results.We now present results of L-BFGS-B on a set of test problems from the CUTE collection[4]. We tested only bound constrained problems with n � 5 and unconstrained problems with5



n � 100. As a benchmark we also present the results obtained by the SR1 and Exact Hessianmethods of the LANCELOT package [10]. LANCELOT was run using all its default options.All runs were performed on a SPARCstation-2 with 32Mb of main memory; the stopping testwas kproj gk1 � 10�5: (4)The meaning of some of the variables used in the tables is as follows.nbnd: the number of active bounds at the solution of LANCELOT{SR1.nfg: the total number of function or gradient evaluations.nf: the total number of function evaluations. (In LANCELOT, the number of function evalu-ations may di�er from the number of gradient evaluations.)Tables 1.1 and 1.2 indicate that L-BFGS-B is a competitive code in terms of CPU time.This came as a surprise since L-BFGS-B does not use any speci�c knowledge of the objectivefunction, as is the case in both versions of LANCELOT. On the other hand, LANCELOT usedmuch fewer function evaluations. It is an interesting fact that L-BFGS-B is sometimes unableto reduce the projected gradient su�ciently to satisfy the stopping condition even though thefunction value obtained is very good. More speci�cally, in the runs marked by C1 in the tables,L-BFGS-B obtained at least as good function value (to �ve digits) as LANCELOT but thegradient did not meet the stopping condition (4). We do not interpret these as failures of thealgorithm, and feel that this property of L-BFGS-B deserves further study.Tables 1.3 and 1.4 show the e�ect of varying the number m of updates saved. Increasing mde�nitely improves the reliability of the algorithm. Although increasing m often reduces thenumber of function evaluations, this e�ect is not consistent, and it does cause an increase inCPU time in most cases.

6



BOUND CONSTRAINED PROBLEMSL-BFGS-B L-BFGS-B LANCELOT LANCELOTProblem n nbnd m=5 m=17 SR1 Hessiannfg time nfg time nf time nf timeBDEXP 1000 0 15 2.31 16 3.50 27 13.74 11 6.54BIGGS5 6 1 121 0.88 69 1.51 41 0.62 19 0.30BQPGASIM 50 7 25 0.28 23 0.43 8 0.58 4 0.34BQPGAUSS 2003 27 �F1 (7E{3) �C1 (4E{4) 20 1957.59 9 1751.29HATFLDC 25 0 23 0.19 23 0.41 5 0.11 5 0.19HS110 50 50 2 0.02 2 0.02 2 0.17 2 0.16HS45 5 5 11 0.03 11 0.01 3 0.05 3 0.03JNLBRNGA 15625 5657 332 740.33 296 1133.88 24 1263.77 22 1502.96JNLBRNGB 1024 516 424 62.73 426 125.17 6 7.21 6 5.56LINVERSE 999 338 291 56.85 369 159.31 27 194.08 28 149.99MAXLIKA 8 1 1665 88.38 158 10.27 98 24.33 9 2.24MCCORMCK 1000 0 15 1.85 15 2.05 7 5.25 5 3.97NONSCOMP 1000 2 45 6.79 60 17.24 9 4.70 9 4.43OBSTCLAE 5625 2724 258 207.20 308 455.60 7 1442.00 6 1422.62OBSTCLAL 1024 508 40 5.84 40 10.45 11 9.45 9 7.69OBSTCLBL 1024 475 50 7.83 55 16.62 8 15.42 8 18.45OBSTCLBM 15625 4309 146 353.04 138 573.84 7 1106.37 6 2017.70OBSTCLBU 1024 475 44 6.57 41 11.48 9 16.10 8 8.45PALMER1A 6 0 799 4.95 262 4.50 113 2.29 68 1.37PALMER1E 8 0 �F1 (7E{2) 290 5.06 190 6.95 204 7.38PALMER2A 6 0 518 3.67 182 4.12 180 3.05 157 2.60PALMER2E 8 0 �F1 (2E{3) 291 6.98 268 8.01 113 3.89PALMER3A 6 0 716 5.13 140 3.31 176 3.02 147 2.48PALMER3E 8 0 �F1 (4E{4) 221 3.59 141 3.81 68 1.76PALMER4A 6 0 483 3.30 128 2.82 98 1.54 48 0.80PALMER4E 8 0 �F1 (3E{3) 172 2.89 206 4.78 67 1.95PROBPENL 500 0 3 0.10 3 0.11 3 1.72 2 1.67S368 100 29 21 16.84 21 16.93 37 91.24 8 21.14TORSION1 1024 436 43 6.35 32 8.16 13 11.04 11 10.18TORSION2 1024 436 61 10.08 55 18.33 10 12.31 5 12.69TORSION3 1024 748 23 2.76 22 3.61 7 8.43 6 4.05TORSION4 1024 748 49 5.87 43 8.32 7 6.73 6 4.85TORSION6 14884 12316 362 707.22 360 1157.74 10 130.73 9 130.31Table 1.1. Test results of L-BFGS-B and results of LANCELOT with SR1 and exact Hessian options,on bound constrained problems from the CUTE collection.� : Termination because the number of function evaluations reached 9999.�� : Termination because the code could make no further progress in reducing f .(In cases �� and � the value in parentheses is the norm of the projected gradient at the �nal iterate.)C1: Gradient stopping test (4) was not met but the �nal function value was at least as good as thatobtained by LANCELOT SR1.F1: Gradient stopping test (4) was not met and the �nal function value was greater than that obtainedby LANCELOT SR1.
7



UNCONSTRAINED PROBLEMSL-BFGS-B L-BFGS-B LANCELOT LANCELOTProblem n m=5 m=17 SR1 Hessiannfg time nfg time nf time nf timeARWHEAD 1000 13 1.09 ��C1 (2E{5) 5 4.66 6 4.79BDQRTIC 100 101 1.28 47 1.29 11 1.06 12 1.07BROYDN7D 1000 373 66.30 398 104.51 112 62.72 125 66.52CRAGGLVY 1000 95 13.33 89 19.08 15 9.81 15 9.89DIXMAANA 1500 12 1.34 13 1.66 8 8.71 6 7.96DIXMAANB 1500 12 1.36 12 1.43 9 10.18 8 8.96DIXMAANC 1500 14 1.61 14 1.85 10 8.91 12 11.28DIXMAAND 1500 15 1.70 15 2.08 13 13.07 20 15.73DIXMAANE 1500 188 24.28 169 41.07 14 13.01 7 8.74DIXMAANF 1500 163 21.04 126 30.71 26 21.17 33 22.11DIXMAANG 1500 158 20.38 127 30.94 32 24.78 25 18.05DIXMAANH 1500 156 20.30 124 30.01 37 28.07 36 24.44DIXMAANI 1500 1237 166.37 1066 273.08 11 11.56 8 9.30DIXMAANK 1500 130 16.59 146 35.36 34 25.98 51 32.56DIXMAANL 1500 134 16.93 120 28.04 105 67.67 50 35.88DQDRTIC 1000 19 1.47 19 1.73 3 2.47 3 2.55DQRTIC 500 43 1.46 43 2.96 34 6.13 34 6.11EIGENALS 110 574 17.21 302 15.77 21 4.72 22 4.36EIGENBLS 110 1116 33.36 1041 55.73 186 98.47 193 95.55EIGENCLS 462 2900 563.81 2507 599.32 456 2010.40 543 2299.42ENGVAL1 1000 23 2.02 20 2.38 8 6.28 8 6.03FREUROTH 1000 ��C1 (2E{5) ��C1 (1E{3) 11 7.53 11 7.27GENROSE 500 1244 60.86 1315 116.82 590 103.92 586 99.79MOREBV 1000 79 6.85 77 12.22 2 3.89 2 3.85NONDIA 1000 23 1.79 23 2.56 C2 C2 30 12.54NONDQUAR 100 1001 10.09 828 25.82 16 0.86 16 0.86PENALTY1 1000 60 3.91 60 7.58 64 118.89 64 117.61PENALTY3 100 ��C1 (3E{3) ��C1 (3E{3) 100 436.12 ��C1 (2E{4)QUARTC 1000 47 3.10 47 5.86 36 12.74 36 12.68SINQUAD 1000 183 17.17 210 32.76 132 81.51 132 79.20SROSENBR 1000 20 1.18 19 1.77 14 6.85 11 5.92TQUARTIC 1000 27 1.77 27 2.80 13 7.76 13 5.93TRIDIA 1000 763 48.90 534 78.98 3 3.96 3 3.91Table 1.2. Test results of L-BFGS-B and results of LANCELOT with SR1 and exact Hessian options,on unconstrained problems from the CUTE collection.� : Termination because the number of function evaluations reached 9999.�� : Termination because the code could make no further progress in reducing f .(In cases �� and � the value in parentheses is the norm of the projected gradient at the �nal iterate.)C1: Gradient stopping test (4) was not met but the �nal function value was at least as good as thatobtained by LANCELOT SR1.C2: The SR1 option of LANCELOT converged to a di�erent solution point than the other methods.
8



Varying m - Bound Constrained ProblemsL-BFGS-B L-BFGS-B L-BFGS-B L-BFGS-BProblem n m=3 m=5 m=17 m=29nfg time nfg time nfg time nfg timeBDEXP 1000 15 1.91 15 2.31 16 3.50 16 3.61BIGGS5 6 109 0.57 121 0.88 69 1.51 71 3.23BQPGASIM 50 28 0.25 25 0.28 23 0.43 23 0.43BQPGAUSS 2003 �F1 (3E{2) �F1 (7E{3) �C1 (4E{4) ��C1 (5E{5)HATFLDC 25 25 0.14 23 0.19 23 0.41 23 0.36HS110 50 2 0.01 2 0.02 2 0.02 2 0.02HS45 5 11 0.02 11 0.03 11 0.01 11 0.01JNLBRNGA 15625 389 763.79 332 740.33 296 1133.88 323 1758.70JNLBRNGB 1024 569 65.13 424 62.73 426 125.17 447 228.05LINVERSE 999 564 91.89 291 56.85 369 159.31 416 315.31MAXLIKA 8 �F1 (5E{3) 1665 88.38 158 10.27 118 10.67MCCORMCK 1000 15 2.00 15 1.85 15 2.05 15 2.04NONSCOMP 1000 46 5.38 45 6.79 60 17.24 61 20.14OBSTCLAE 5625 261 182.05 258 207.20 308 455.60 282 578.10OBSTCLAL 1024 39 4.74 40 5.84 40 10.45 39 11.71OBSTCLBL 1024 55 7.07 50 7.83 55 16.62 53 22.27OBSTCLBM 15625 161 338.97 146 353.04 138 573.84 146 828.85OBSTCLBU 1024 46 5.62 44 6.57 41 11.48 41 15.12PALMER1A 6 �F1 (2E{1) 799 4.95 262 4.50 197 8.01PALMER1E 8 �F1 (2E{1) �F1 (7E{2) 290 5.06 254 10.81PALMER2A 6 2888 16.26 518 3.67 182 4.12 170 9.69PALMER2E 8 �F1 (1E{3) �F1 (2E{3) 291 6.98 221 13.29PALMER3A 6 2460 14.12 716 5.13 140 3.31 134 7.45PALMER3E 8 �F1 (2E{3) �F1 (4E{4) 221 3.59 182 7.50PALMER4A 6 1985 11.38 483 3.30 128 2.82 90 4.32PALMER4E 8 �F1 (5E{2) �F1 (3E{3) 172 2.89 142 5.42PROBPENL 500 3 0.11 3 0.10 3 0.11 3 0.10S368 100 19 15.23 21 16.84 21 16.93 21 16.86TORSION1 1024 60 7.38 43 6.35 32 8.16 33 9.51TORSION2 1024 59 7.87 61 10.08 55 18.33 63 30.45TORSION3 1024 27 2.86 23 2.76 22 3.61 22 3.65TORSION4 1024 50 5.96 49 5.87 43 8.32 42 10.17TORSION6 14884 309 565.25 362 707.22 360 1157.74 422 1994.78Table 1.3. Test results of L-BFGS-B with various values for m, on bound constrained problems fromthe CUTE collection.� : Termination because the number of function evaluations reached 9999.�� : Termination because the code could make no further progress in reducing f .(In cases �� and � the value in parentheses is the norm of the projected gradient at the �nal iterate.)C1: Gradient stopping test (4) was not met but the �nal function value was at least as good as thatobtained by LANCELOT SR1.F1: Gradient stopping test (4) was not met and the �nal function value was greater than that obtainedby LANCELOT SR1.
9



Varying m -Unconstrained ProblemsL-BFGS-B L-BFGS-B L-BFGS-B L-BFGS-BProblem n m=3 m=5 m=17 m=29nfg time nfg time nfg time nfg timeARWHEAD 1000 12 0.95 13 1.09 ��C1 (2E{5) ��C1 (2E{5)BDQRTIC 100 124 1.34 101 1.28 47 1.29 39 1.59BROYDN7D 1000 393 64.47 373 66.30 398 104.51 384 146.08CRAGGLVY 1000 99 12.79 95 13.33 89 19.08 85 24.45DIXMAANA 1500 11 1.09 12 1.34 13 1.66 13 1.61DIXMAANB 1500 12 1.24 12 1.36 12 1.43 12 1.44DIXMAANC 1500 14 1.47 14 1.61 14 1.85 14 1.81DIXMAAND 1500 15 1.56 15 1.70 15 2.08 15 2.04DIXMAANE 1500 214 23.53 188 24.28 169 41.07 166 60.31DIXMAANF 1500 164 18.14 163 21.04 126 30.71 124 45.14DIXMAANG 1500 191 20.93 158 20.38 127 30.94 132 47.22DIXMAANH 1500 157 17.37 156 20.30 124 30.01 127 46.04DIXMAANI 1500 828 97.87 1237 166.37 1066 273.08 922 364.27DIXMAANK 1500 146 16.10 130 16.59 146 35.36 133 47.63DIXMAANL 1500 164 17.93 134 16.93 120 28.04 125 44.08DQDRTIC 1000 23 1.64 19 1.47 19 1.73 19 1.76DQRTIC 500 43 1.28 43 1.46 43 2.96 43 4.06EIGENALS 110 769 21.30 574 17.21 302 15.77 145 13.02EIGENBLS 110 1445 39.91 1116 33.36 1041 55.73 870 86.35EIGENCLS 462 2613 493.70 2900 563.81 2507 599.32 1969 593.89ENGVAL1 1000 23 1.78 23 2.02 20 2.38 20 2.39FREUROTH 1000 82 7.73 ��C1 (2E{5) ��C1 (1E{3) 38 6.40GENROSE 500 1323 57.99 1244 60.86 1315 116.82 1306 198.67MOREBV 1000 73 5.50 79 6.85 77 12.22 76 18.04NONDIA 1000 21 1.48 23 1.79 23 2.56 23 2.67NONDQUAR 100 866 6.96 1001 10.09 828 25.82 588 43.50PENALTY1 1000 60 3.26 60 3.91 60 7.58 60 10.96PENALTY3 100 ��C1 (9E{3) ��C1 (3E{3) ��C1 (3E{3) ��C1 (1E{3)QUARTC 1000 47 2.68 47 3.10 47 5.86 47 7.62SINQUAD 1000 211 17.45 183 17.17 210 32.76 231 52.93SROSENBR 1000 18 0.90 20 1.18 19 1.77 19 1.81TQUARTIC 1000 23 1.34 27 1.77 27 2.80 27 2.97TRIDIA 1000 882 44.16 763 48.90 534 78.98 474 120.90Table 1.4. Test results of L-BFGS-B with various values of m, on unconstrained problems from theCUTE collection.� : Termination because the number of function evaluations reached 9999.�� : Termination because the code could make no further progress in reducing f .(In cases �� and � the value in parentheses is the norm of the projected gradient at the �nal iterate.)C1: Gradient stopping test (4) was not met but the �nal function value was at least as good as thatobtained by LANCELOT SR1.
10



Acknowledgements. The authors would like to thank Brett Averick and Jorge Mor�e for theirhelp and suggestions. This code follows many of the ideas and the style of their MINPACK-2codes [2]. Many constructive comments by Hugo Scolnik, the referee and associate editor arealso gratefully acknowledged.* References[1] B. M. Averick and J. J. Mor�e, (1992), Private communication.[2] B. M. Averick and J. J. Mor�e, \The MINPACK-2 package", in preparation.[3] D. P. Bertsekas, \Projected Newton methods for optimization problems with simple con-straints", SIAM J. Control and Optimization 20 (1982), pp. 221{246.[4] I. Bongartz, A. R. Conn, N. I. M. Gould, Ph. L. Toint (1993). \CUTE: constrained andunconstrained testing environment", Research Report, IBM T.J. Watson Research Center,Yorktown Heights, NY.[5] A. Buckley and A. LeNir, \BBVSCG {A variable storage algorithm for function minimiza-tion", ACM Transactions on Mathematical Software 11, 2 (1985), pp. 103{119.[6] A Buckley, \Remark on algorithm 630", ACM Transactions on Mathematical Software 15,3 (1989), pp. 262{274.[7] R. H. Byrd, J. Nocedal and R. B. Schnabel, \Representation of quasi-Newton matricesand their use in limited memory methods", Mathematical Programming 63, 4, 1994, pp.129{156.[8] R. H. Byrd, P. Lu, J. Nocedal and C. Zhu. \A limited memory algorithm for boundconstrained optimization", SIAM Journal on Scienti�c Computing, 16, 5 pp. 1190{1208.[9] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, \Testing a class of methods for solving min-imization problems with simple bounds on the variables", Mathematics of Computation.Vol. 50, No 182 (1988), pp. 399{430.[10] A. R. Conn, N. I. M. Gould, Ph. L. Toint (1992). \LANCELOT: a FORTRAN pack-age for large-scale nonlinear optimization (Release A)", Number 17 in Springer Series inComputational Mathematics, Springer-Verlag, New York.[11] J. E. Dennis, Jr. and R. B. Schnabel, Numerical Methods for Unconstrained Optimizationand Nonlinear Equations, Prentice-Hall, Englewood Cli�s, N.J., 1983.[12] Harwell Subroutine Library, Release 10 (1990). Advanced Computing Department, AEAIndustrial Technology, Harwell Laboratory, Oxfordshire, United Kingdom.[13] J. C. Gilbert and C. Lemar�echal, \Some numerical experiments with variable storagequasi-Newton algorithms," Mathematical Programming 45 (1989), pp. 407{436.[14] P. E. Gill, W. Murray and M. H. Wright, Practical Optimization, Academic Press, London,1981. 11



[15] E. S. Levitin and B. T. Polyak, \Constrained minimization problems", USSR Comput.Math. and Math. Phys. 6 (1966), pp. 1{50.[16] D. C. Liu and J. Nocedal, \On the limited memory BFGS method for large scale opti-mization methods", Mathematical Programming 45 (1989), pp. 503{528.[17] J. J. Mor�e and D. J. Thuente (1990), \On line search algorithms with guaranteed su�-cient decrease", Mathematics and Computer Science Division Preprint MCS-P153-0590,Argonne National Laboratory (Argonne, IL).[18] J. J. Mor�e and G. Toraldo, \Algorithms for bound constrained quadratic programmingproblems", Numer. Math. 55 (1989), pp. 377{400.[19] J. Nocedal, \Updating quasi-Newton matrices with limited storage", Mathematics of Com-putation 35 (1980), pp. 773{782.[20] D. Siegel (1992). Implementing and modifying Broyden class updates for large scale opti-mization, Report DAMPT 1992/NA12, University of Cambridge.[21] C. Zhu, R. H. Byrd, P. Lu and J. Nocedal, \L-BFGS-B { Fortran subroutines for large-scale bound constrained optimization", Northwestern University EECS Technical ReportNAM12 (1995).

12


