summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorNathan Cassereau <84033440+ncassereau-idris@users.noreply.github.com>2022-06-13 14:49:55 +0200
committerGitHub <noreply@github.com>2022-06-13 14:49:55 +0200
commite547fe30c59be72ae93c9f017786477b2652776f (patch)
treea4e7802f02e0660d4da0821fb402bffc1a666858
parent1f307594244dd4c274b64d028823cbcfff302f37 (diff)
[MRG] Correct pointer overflow in EMD (#381)
* avoid overflow on openmp version of emd solver * monothread version updated * Fixed typo in readme * added PR in releases * typo in releases.md * added a precision to releases.md * added a precision to releases.md * correct readme * forgot to cast * lower error
-rw-r--r--README.md4
-rw-r--r--RELEASES.md5
-rw-r--r--ot/lp/EMD_wrapper.cpp36
-rw-r--r--ot/lp/network_simplex_simple_omp.h4
4 files changed, 26 insertions, 23 deletions
diff --git a/README.md b/README.md
index 12340d5..7c9475b 100644
--- a/README.md
+++ b/README.md
@@ -26,8 +26,8 @@ POT provides the following generic OT solvers (links to examples):
* Debiased Sinkhorn barycenters [Sinkhorn divergence barycenter](https://pythonot.github.io/auto_examples/barycenters/plot_debiased_barycenter.html) [37]
* [Smooth optimal transport solvers](https://pythonot.github.io/auto_examples/plot_OT_1D_smooth.html) (dual and semi-dual) for KL and squared L2 regularizations [17].
* Weak OT solver between empirical distributions [39]
-* Non regularized [Wasserstein barycenters [16] ](https://pythonot.github.io/auto_examples/barycenters/plot_barycenter_lp_vs_entropic.html)) with LP solver (only small scale).
-* [Gromov-Wasserstein distances](https://pythonot.github.io/auto_examples/gromov/plot_gromov.html) and [GW barycenters](https://pythonot.github.io/auto_examples/gromov/plot_gromov_barycenter.html) (exact [13] and regularized [12]), differentiable using gradients from
+* Non regularized [Wasserstein barycenters [16] ](https://pythonot.github.io/auto_examples/barycenters/plot_barycenter_lp_vs_entropic.html) with LP solver (only small scale).
+* [Gromov-Wasserstein distances](https://pythonot.github.io/auto_examples/gromov/plot_gromov.html) and [GW barycenters](https://pythonot.github.io/auto_examples/gromov/plot_gromov_barycenter.html) (exact [13] and regularized [12]), differentiable using gradients from Graph Dictionary Learning [38]
* [Fused-Gromov-Wasserstein distances solver](https://pythonot.github.io/auto_examples/gromov/plot_fgw.html#sphx-glr-auto-examples-plot-fgw-py) and [FGW barycenters](https://pythonot.github.io/auto_examples/gromov/plot_barycenter_fgw.html) [24]
* [Stochastic
solver](https://pythonot.github.io/auto_examples/others/plot_stochastic.html) and
diff --git a/RELEASES.md b/RELEASES.md
index fdaff59..b384617 100644
--- a/RELEASES.md
+++ b/RELEASES.md
@@ -13,7 +13,10 @@
- Fixed an issue where Sinkhorn solver assumed a symmetric cost matrix (Issue #374, PR #375)
- Fixed an issue where hitting iteration limits would be reported to stderr by std::cerr regardless of Python's stderr stream status (PR #377)
- Fixed an issue where the metric argument in ot.dist did not allow a callable parameter (Issue #378, PR #379)
-- Fixed an issue where the max number of iterations in ot.emd was not allow to go beyond 2^31 (PR #380)
+- Fixed an issue where the max number of iterations in ot.emd was not allowed to go beyond 2^31 (PR #380)
+- Fixed an issue where pointers would overflow in the EMD solver, returning an
+incomplete transport plan above a certain size (slightly above 46k, its square being
+roughly 2^31) (PR #381)
## 0.8.2
diff --git a/ot/lp/EMD_wrapper.cpp b/ot/lp/EMD_wrapper.cpp
index 457216b..4aa5a6e 100644
--- a/ot/lp/EMD_wrapper.cpp
+++ b/ot/lp/EMD_wrapper.cpp
@@ -24,7 +24,7 @@ int EMD_wrap(int n1, int n2, double *X, double *Y, double *D, double *G,
// beware M and C are stored in row major C style!!!
using namespace lemon;
- int n, m, cur;
+ uint64_t n, m, cur;
typedef FullBipartiteDigraph Digraph;
DIGRAPH_TYPEDEFS(Digraph);
@@ -51,15 +51,15 @@ int EMD_wrap(int n1, int n2, double *X, double *Y, double *D, double *G,
// Define the graph
- std::vector<int> indI(n), indJ(m);
+ std::vector<uint64_t> indI(n), indJ(m);
std::vector<double> weights1(n), weights2(m);
Digraph di(n, m);
- NetworkSimplexSimple<Digraph,double,double, node_id_type> net(di, true, n+m, ((int64_t)n)*((int64_t)m), maxIter);
+ NetworkSimplexSimple<Digraph,double,double, node_id_type> net(di, true, (int) (n + m), n * m, maxIter);
// Set supply and demand, don't account for 0 values (faster)
cur=0;
- for (int i=0; i<n1; i++) {
+ for (uint64_t i=0; i<n1; i++) {
double val=*(X+i);
if (val>0) {
weights1[ cur ] = val;
@@ -70,7 +70,7 @@ int EMD_wrap(int n1, int n2, double *X, double *Y, double *D, double *G,
// Demand is actually negative supply...
cur=0;
- for (int i=0; i<n2; i++) {
+ for (uint64_t i=0; i<n2; i++) {
double val=*(Y+i);
if (val>0) {
weights2[ cur ] = -val;
@@ -79,12 +79,12 @@ int EMD_wrap(int n1, int n2, double *X, double *Y, double *D, double *G,
}
- net.supplyMap(&weights1[0], n, &weights2[0], m);
+ net.supplyMap(&weights1[0], (int) n, &weights2[0], (int) m);
// Set the cost of each edge
int64_t idarc = 0;
- for (int i=0; i<n; i++) {
- for (int j=0; j<m; j++) {
+ for (uint64_t i=0; i<n; i++) {
+ for (uint64_t j=0; j<m; j++) {
double val=*(D+indI[i]*n2+indJ[j]);
net.setCost(di.arcFromId(idarc), val);
++idarc;
@@ -95,7 +95,7 @@ int EMD_wrap(int n1, int n2, double *X, double *Y, double *D, double *G,
// Solve the problem with the network simplex algorithm
int ret=net.run();
- int i, j;
+ uint64_t i, j;
if (ret==(int)net.OPTIMAL || ret==(int)net.MAX_ITER_REACHED) {
*cost = 0;
Arc a; di.first(a);
@@ -126,7 +126,7 @@ int EMD_wrap_omp(int n1, int n2, double *X, double *Y, double *D, double *G,
// beware M and C are stored in row major C style!!!
using namespace lemon_omp;
- int n, m, cur;
+ uint64_t n, m, cur;
typedef FullBipartiteDigraph Digraph;
DIGRAPH_TYPEDEFS(Digraph);
@@ -153,15 +153,15 @@ int EMD_wrap_omp(int n1, int n2, double *X, double *Y, double *D, double *G,
// Define the graph
- std::vector<int> indI(n), indJ(m);
+ std::vector<uint64_t> indI(n), indJ(m);
std::vector<double> weights1(n), weights2(m);
Digraph di(n, m);
- NetworkSimplexSimple<Digraph,double,double, node_id_type> net(di, true, n+m, ((int64_t)n)*((int64_t)m), maxIter, numThreads);
+ NetworkSimplexSimple<Digraph,double,double, node_id_type> net(di, true, (int) (n + m), n * m, maxIter, numThreads);
// Set supply and demand, don't account for 0 values (faster)
cur=0;
- for (int i=0; i<n1; i++) {
+ for (uint64_t i=0; i<n1; i++) {
double val=*(X+i);
if (val>0) {
weights1[ cur ] = val;
@@ -172,7 +172,7 @@ int EMD_wrap_omp(int n1, int n2, double *X, double *Y, double *D, double *G,
// Demand is actually negative supply...
cur=0;
- for (int i=0; i<n2; i++) {
+ for (uint64_t i=0; i<n2; i++) {
double val=*(Y+i);
if (val>0) {
weights2[ cur ] = -val;
@@ -181,12 +181,12 @@ int EMD_wrap_omp(int n1, int n2, double *X, double *Y, double *D, double *G,
}
- net.supplyMap(&weights1[0], n, &weights2[0], m);
+ net.supplyMap(&weights1[0], (int) n, &weights2[0], (int) m);
// Set the cost of each edge
int64_t idarc = 0;
- for (int i=0; i<n; i++) {
- for (int j=0; j<m; j++) {
+ for (uint64_t i=0; i<n; i++) {
+ for (uint64_t j=0; j<m; j++) {
double val=*(D+indI[i]*n2+indJ[j]);
net.setCost(di.arcFromId(idarc), val);
++idarc;
@@ -197,7 +197,7 @@ int EMD_wrap_omp(int n1, int n2, double *X, double *Y, double *D, double *G,
// Solve the problem with the network simplex algorithm
int ret=net.run();
- int i, j;
+ uint64_t i, j;
if (ret==(int)net.OPTIMAL || ret==(int)net.MAX_ITER_REACHED) {
*cost = 0;
Arc a; di.first(a);
diff --git a/ot/lp/network_simplex_simple_omp.h b/ot/lp/network_simplex_simple_omp.h
index 5f19d73..c324d4c 100644
--- a/ot/lp/network_simplex_simple_omp.h
+++ b/ot/lp/network_simplex_simple_omp.h
@@ -41,8 +41,8 @@
#undef EPSILON
#undef _EPSILON
#undef MAX_DEBUG_ITER
-#define EPSILON std::numeric_limits<Cost>::epsilon()*10
-#define _EPSILON 1e-8
+#define EPSILON std::numeric_limits<Cost>::epsilon()
+#define _EPSILON 1e-14
#define MAX_DEBUG_ITER 100000
/// \ingroup min_cost_flow_algs