summaryrefslogtreecommitdiff
path: root/docs/source/auto_examples/plot_OTDA_mapping.ipynb
diff options
context:
space:
mode:
authorRémi Flamary <remi.flamary@gmail.com>2016-12-02 15:38:59 +0100
committerRémi Flamary <remi.flamary@gmail.com>2016-12-02 15:38:59 +0100
commite458b7a58d9790e7c5ff40dea235402d9c4c8662 (patch)
treeac9da575654c78aa04a177723603935051b5d42d /docs/source/auto_examples/plot_OTDA_mapping.ipynb
parent7609f9e6a4103e13beb294873f4dac562b1d45e1 (diff)
add doc for gallery
Diffstat (limited to 'docs/source/auto_examples/plot_OTDA_mapping.ipynb')
-rw-r--r--docs/source/auto_examples/plot_OTDA_mapping.ipynb54
1 files changed, 54 insertions, 0 deletions
diff --git a/docs/source/auto_examples/plot_OTDA_mapping.ipynb b/docs/source/auto_examples/plot_OTDA_mapping.ipynb
new file mode 100644
index 0000000..ec405af
--- /dev/null
+++ b/docs/source/auto_examples/plot_OTDA_mapping.ipynb
@@ -0,0 +1,54 @@
+{
+ "nbformat_minor": 0,
+ "nbformat": 4,
+ "cells": [
+ {
+ "execution_count": null,
+ "cell_type": "code",
+ "source": [
+ "%matplotlib inline"
+ ],
+ "outputs": [],
+ "metadata": {
+ "collapsed": false
+ }
+ },
+ {
+ "source": [
+ "\n===============================================\nOT mapping estimation for domain adaptation [8]\n===============================================\n\n[8] M. Perrot, N. Courty, R. Flamary, A. Habrard, \"Mapping estimation for\n discrete optimal transport\", Neural Information Processing Systems (NIPS), 2016.\n\n"
+ ],
+ "cell_type": "markdown",
+ "metadata": {}
+ },
+ {
+ "execution_count": null,
+ "cell_type": "code",
+ "source": [
+ "import numpy as np\nimport matplotlib.pylab as pl\nimport ot\n\n\n\n#%% dataset generation\n\nnp.random.seed(0) # makes example reproducible\n\nn=100 # nb samples in source and target datasets\ntheta=2*np.pi/20\nnz=0.1\nxs,ys=ot.datasets.get_data_classif('gaussrot',n,nz=nz)\nxt,yt=ot.datasets.get_data_classif('gaussrot',n,theta=theta,nz=nz)\n\n# one of the target mode changes its variance (no linear mapping)\nxt[yt==2]*=3\nxt=xt+4\n\n\n#%% plot samples\n\npl.figure(1,(8,5))\npl.clf()\n\npl.scatter(xs[:,0],xs[:,1],c=ys,marker='+',label='Source samples')\npl.scatter(xt[:,0],xt[:,1],c=yt,marker='o',label='Target samples')\n\npl.legend(loc=0)\npl.title('Source and target distributions')\n\n\n\n#%% OT linear mapping estimation\n\neta=1e-8 # quadratic regularization for regression\nmu=1e0 # weight of the OT linear term\nbias=True # estimate a bias\n\not_mapping=ot.da.OTDA_mapping_linear()\not_mapping.fit(xs,xt,mu=mu,eta=eta,bias=bias,numItermax = 20,verbose=True)\n\nxst=ot_mapping.predict(xs) # use the estimated mapping\nxst0=ot_mapping.interp() # use barycentric mapping\n\n\npl.figure(2,(10,7))\npl.clf()\npl.subplot(2,2,1)\npl.scatter(xt[:,0],xt[:,1],c=yt,marker='o',label='Target samples',alpha=.3)\npl.scatter(xst0[:,0],xst0[:,1],c=ys,marker='+',label='barycentric mapping')\npl.title(\"barycentric mapping\")\n\npl.subplot(2,2,2)\npl.scatter(xt[:,0],xt[:,1],c=yt,marker='o',label='Target samples',alpha=.3)\npl.scatter(xst[:,0],xst[:,1],c=ys,marker='+',label='Learned mapping')\npl.title(\"Learned mapping\")\n\n\n\n#%% Kernel mapping estimation\n\neta=1e-5 # quadratic regularization for regression\nmu=1e-1 # weight of the OT linear term\nbias=True # estimate a bias\nsigma=1 # sigma bandwidth fot gaussian kernel\n\n\not_mapping_kernel=ot.da.OTDA_mapping_kernel()\not_mapping_kernel.fit(xs,xt,mu=mu,eta=eta,sigma=sigma,bias=bias,numItermax = 10,verbose=True)\n\nxst_kernel=ot_mapping_kernel.predict(xs) # use the estimated mapping\nxst0_kernel=ot_mapping_kernel.interp() # use barycentric mapping\n\n\n#%% Plotting the mapped samples\n\npl.figure(2,(10,7))\npl.clf()\npl.subplot(2,2,1)\npl.scatter(xt[:,0],xt[:,1],c=yt,marker='o',label='Target samples',alpha=.2)\npl.scatter(xst0[:,0],xst0[:,1],c=ys,marker='+',label='Mapped source samples')\npl.title(\"Bary. mapping (linear)\")\npl.legend(loc=0)\n\npl.subplot(2,2,2)\npl.scatter(xt[:,0],xt[:,1],c=yt,marker='o',label='Target samples',alpha=.2)\npl.scatter(xst[:,0],xst[:,1],c=ys,marker='+',label='Learned mapping')\npl.title(\"Estim. mapping (linear)\")\n\npl.subplot(2,2,3)\npl.scatter(xt[:,0],xt[:,1],c=yt,marker='o',label='Target samples',alpha=.2)\npl.scatter(xst0_kernel[:,0],xst0_kernel[:,1],c=ys,marker='+',label='barycentric mapping')\npl.title(\"Bary. mapping (kernel)\")\n\npl.subplot(2,2,4)\npl.scatter(xt[:,0],xt[:,1],c=yt,marker='o',label='Target samples',alpha=.2)\npl.scatter(xst_kernel[:,0],xst_kernel[:,1],c=ys,marker='+',label='Learned mapping')\npl.title(\"Estim. mapping (kernel)\")"
+ ],
+ "outputs": [],
+ "metadata": {
+ "collapsed": false
+ }
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "name": "python2",
+ "language": "python"
+ },
+ "language_info": {
+ "mimetype": "text/x-python",
+ "nbconvert_exporter": "python",
+ "name": "python",
+ "file_extension": ".py",
+ "version": "2.7.12",
+ "pygments_lexer": "ipython2",
+ "codemirror_mode": {
+ "version": 2,
+ "name": "ipython"
+ }
+ }
+ }
+} \ No newline at end of file