summaryrefslogtreecommitdiff
path: root/docs/source/auto_examples/plot_OT_L1_vs_L2.ipynb
diff options
context:
space:
mode:
authorRémi Flamary <remi.flamary@gmail.com>2017-08-30 17:01:01 +0200
committerRémi Flamary <remi.flamary@gmail.com>2017-08-30 17:01:01 +0200
commitdc8737a30cb6d9f1305173eb8d16fe6716fd1231 (patch)
tree1f03384de2af88ed07a1e850e0871db826ed53e7 /docs/source/auto_examples/plot_OT_L1_vs_L2.ipynb
parentc2a7a1f3ab4ba5c4f5adeca0fa22d8d6b4fc079d (diff)
wroking make!
Diffstat (limited to 'docs/source/auto_examples/plot_OT_L1_vs_L2.ipynb')
-rw-r--r--docs/source/auto_examples/plot_OT_L1_vs_L2.ipynb4
1 files changed, 2 insertions, 2 deletions
diff --git a/docs/source/auto_examples/plot_OT_L1_vs_L2.ipynb b/docs/source/auto_examples/plot_OT_L1_vs_L2.ipynb
index 46283ac..04ef5c8 100644
--- a/docs/source/auto_examples/plot_OT_L1_vs_L2.ipynb
+++ b/docs/source/auto_examples/plot_OT_L1_vs_L2.ipynb
@@ -15,7 +15,7 @@
},
{
"source": [
- "\n# 2D Optimal transport for different metrics\n\n\nStole the figure idea from Fig. 1 and 2 in \nhttps://arxiv.org/pdf/1706.07650.pdf\n\n\n@author: rflamary\n\n"
+ "\n# 2D Optimal transport for different metrics\n\n\nStole the figure idea from Fig. 1 and 2 in\nhttps://arxiv.org/pdf/1706.07650.pdf\n\n\n\n"
],
"cell_type": "markdown",
"metadata": {}
@@ -24,7 +24,7 @@
"execution_count": null,
"cell_type": "code",
"source": [
- "import numpy as np\nimport matplotlib.pylab as pl\nimport ot\n\n#%% parameters and data generation\n\nfor data in range(2):\n\n if data:\n n=20 # nb samples\n xs=np.zeros((n,2))\n xs[:,0]=np.arange(n)+1\n xs[:,1]=(np.arange(n)+1)*-0.001 # to make it strictly convex...\n \n xt=np.zeros((n,2))\n xt[:,1]=np.arange(n)+1\n else:\n \n n=50 # nb samples\n xtot=np.zeros((n+1,2))\n xtot[:,0]=np.cos((np.arange(n+1)+1.0)*0.9/(n+2)*2*np.pi)\n xtot[:,1]=np.sin((np.arange(n+1)+1.0)*0.9/(n+2)*2*np.pi)\n \n xs=xtot[:n,:]\n xt=xtot[1:,:]\n \n \n \n a,b = ot.unif(n),ot.unif(n) # uniform distribution on samples\n \n # loss matrix\n M1=ot.dist(xs,xt,metric='euclidean')\n M1/=M1.max()\n \n # loss matrix\n M2=ot.dist(xs,xt,metric='sqeuclidean')\n M2/=M2.max()\n \n # loss matrix\n Mp=np.sqrt(ot.dist(xs,xt,metric='euclidean'))\n Mp/=Mp.max()\n \n #%% plot samples\n \n pl.figure(1+3*data)\n pl.clf()\n pl.plot(xs[:,0],xs[:,1],'+b',label='Source samples')\n pl.plot(xt[:,0],xt[:,1],'xr',label='Target samples')\n pl.axis('equal')\n pl.title('Source and traget distributions')\n \n pl.figure(2+3*data,(15,5))\n pl.subplot(1,3,1)\n pl.imshow(M1,interpolation='nearest')\n pl.title('Eucidean cost')\n pl.subplot(1,3,2)\n pl.imshow(M2,interpolation='nearest')\n pl.title('Squared Euclidean cost')\n \n pl.subplot(1,3,3)\n pl.imshow(Mp,interpolation='nearest')\n pl.title('Sqrt Euclidean cost')\n #%% EMD\n \n G1=ot.emd(a,b,M1)\n G2=ot.emd(a,b,M2)\n Gp=ot.emd(a,b,Mp)\n \n pl.figure(3+3*data,(15,5))\n \n pl.subplot(1,3,1)\n ot.plot.plot2D_samples_mat(xs,xt,G1,c=[.5,.5,1])\n pl.plot(xs[:,0],xs[:,1],'+b',label='Source samples')\n pl.plot(xt[:,0],xt[:,1],'xr',label='Target samples')\n pl.axis('equal')\n #pl.legend(loc=0)\n pl.title('OT Euclidean')\n \n pl.subplot(1,3,2)\n \n ot.plot.plot2D_samples_mat(xs,xt,G2,c=[.5,.5,1])\n pl.plot(xs[:,0],xs[:,1],'+b',label='Source samples')\n pl.plot(xt[:,0],xt[:,1],'xr',label='Target samples')\n pl.axis('equal')\n #pl.legend(loc=0)\n pl.title('OT squared Euclidean')\n \n pl.subplot(1,3,3)\n \n ot.plot.plot2D_samples_mat(xs,xt,Gp,c=[.5,.5,1])\n pl.plot(xs[:,0],xs[:,1],'+b',label='Source samples')\n pl.plot(xt[:,0],xt[:,1],'xr',label='Target samples')\n pl.axis('equal')\n #pl.legend(loc=0)\n pl.title('OT sqrt Euclidean')"
+ "# Author: Remi Flamary <remi.flamary@unice.fr>\n#\n# License: MIT License\n\nimport numpy as np\nimport matplotlib.pylab as pl\nimport ot\n\n#%% parameters and data generation\n\nfor data in range(2):\n\n if data:\n n = 20 # nb samples\n xs = np.zeros((n, 2))\n xs[:, 0] = np.arange(n) + 1\n xs[:, 1] = (np.arange(n) + 1) * -0.001 # to make it strictly convex...\n\n xt = np.zeros((n, 2))\n xt[:, 1] = np.arange(n) + 1\n else:\n\n n = 50 # nb samples\n xtot = np.zeros((n + 1, 2))\n xtot[:, 0] = np.cos(\n (np.arange(n + 1) + 1.0) * 0.9 / (n + 2) * 2 * np.pi)\n xtot[:, 1] = np.sin(\n (np.arange(n + 1) + 1.0) * 0.9 / (n + 2) * 2 * np.pi)\n\n xs = xtot[:n, :]\n xt = xtot[1:, :]\n\n a, b = ot.unif(n), ot.unif(n) # uniform distribution on samples\n\n # loss matrix\n M1 = ot.dist(xs, xt, metric='euclidean')\n M1 /= M1.max()\n\n # loss matrix\n M2 = ot.dist(xs, xt, metric='sqeuclidean')\n M2 /= M2.max()\n\n # loss matrix\n Mp = np.sqrt(ot.dist(xs, xt, metric='euclidean'))\n Mp /= Mp.max()\n\n #%% plot samples\n\n pl.figure(1 + 3 * data, figsize=(7, 3))\n pl.clf()\n pl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')\n pl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples')\n pl.axis('equal')\n pl.title('Source and traget distributions')\n\n pl.figure(2 + 3 * data, figsize=(7, 3))\n\n pl.subplot(1, 3, 1)\n pl.imshow(M1, interpolation='nearest')\n pl.title('Euclidean cost')\n\n pl.subplot(1, 3, 2)\n pl.imshow(M2, interpolation='nearest')\n pl.title('Squared Euclidean cost')\n\n pl.subplot(1, 3, 3)\n pl.imshow(Mp, interpolation='nearest')\n pl.title('Sqrt Euclidean cost')\n pl.tight_layout()\n\n #%% EMD\n G1 = ot.emd(a, b, M1)\n G2 = ot.emd(a, b, M2)\n Gp = ot.emd(a, b, Mp)\n\n pl.figure(3 + 3 * data, figsize=(7, 3))\n\n pl.subplot(1, 3, 1)\n ot.plot.plot2D_samples_mat(xs, xt, G1, c=[.5, .5, 1])\n pl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')\n pl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples')\n pl.axis('equal')\n # pl.legend(loc=0)\n pl.title('OT Euclidean')\n\n pl.subplot(1, 3, 2)\n ot.plot.plot2D_samples_mat(xs, xt, G2, c=[.5, .5, 1])\n pl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')\n pl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples')\n pl.axis('equal')\n # pl.legend(loc=0)\n pl.title('OT squared Euclidean')\n\n pl.subplot(1, 3, 3)\n ot.plot.plot2D_samples_mat(xs, xt, Gp, c=[.5, .5, 1])\n pl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')\n pl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples')\n pl.axis('equal')\n # pl.legend(loc=0)\n pl.title('OT sqrt Euclidean')\n pl.tight_layout()\n\npl.show()"
],
"outputs": [],
"metadata": {