summaryrefslogtreecommitdiff
path: root/docs/source/auto_examples/plot_OT_L1_vs_L2.rst
diff options
context:
space:
mode:
authorRémi Flamary <remi.flamary@gmail.com>2017-09-01 15:31:44 +0200
committerRémi Flamary <remi.flamary@gmail.com>2017-09-01 15:31:44 +0200
commit062071b20d1d40c64bb619931bd11bd28e780485 (patch)
tree74bfcd48bb65304c2a5be74c24cdff29bd82ba4b /docs/source/auto_examples/plot_OT_L1_vs_L2.rst
parent212f3889b1114026765cda0134e02766daa82af2 (diff)
update example with rst titles
Diffstat (limited to 'docs/source/auto_examples/plot_OT_L1_vs_L2.rst')
-rw-r--r--docs/source/auto_examples/plot_OT_L1_vs_L2.rst351
1 files changed, 242 insertions, 109 deletions
diff --git a/docs/source/auto_examples/plot_OT_L1_vs_L2.rst b/docs/source/auto_examples/plot_OT_L1_vs_L2.rst
index ba52bfe..83a7491 100644
--- a/docs/source/auto_examples/plot_OT_L1_vs_L2.rst
+++ b/docs/source/auto_examples/plot_OT_L1_vs_L2.rst
@@ -7,6 +7,8 @@
2D Optimal transport for different metrics
==========================================
+2D OT on empirical distributio with different gound metric.
+
Stole the figure idea from Fig. 1 and 2 in
https://arxiv.org/pdf/1706.07650.pdf
@@ -14,6 +16,80 @@ https://arxiv.org/pdf/1706.07650.pdf
+.. code-block:: python
+
+
+ # Author: Remi Flamary <remi.flamary@unice.fr>
+ #
+ # License: MIT License
+
+ import numpy as np
+ import matplotlib.pylab as pl
+ import ot
+
+
+
+
+
+
+
+Dataset 1 : uniform sampling
+#############################################################################
+
+
+
+.. code-block:: python
+
+
+ n = 20 # nb samples
+ xs = np.zeros((n, 2))
+ xs[:, 0] = np.arange(n) + 1
+ xs[:, 1] = (np.arange(n) + 1) * -0.001 # to make it strictly convex...
+
+ xt = np.zeros((n, 2))
+ xt[:, 1] = np.arange(n) + 1
+
+ a, b = ot.unif(n), ot.unif(n) # uniform distribution on samples
+
+ # loss matrix
+ M1 = ot.dist(xs, xt, metric='euclidean')
+ M1 /= M1.max()
+
+ # loss matrix
+ M2 = ot.dist(xs, xt, metric='sqeuclidean')
+ M2 /= M2.max()
+
+ # loss matrix
+ Mp = np.sqrt(ot.dist(xs, xt, metric='euclidean'))
+ Mp /= Mp.max()
+
+ # Data
+ pl.figure(1, figsize=(7, 3))
+ pl.clf()
+ pl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')
+ pl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples')
+ pl.axis('equal')
+ pl.title('Source and traget distributions')
+
+
+ # Cost matrices
+ pl.figure(2, figsize=(7, 3))
+
+ pl.subplot(1, 3, 1)
+ pl.imshow(M1, interpolation='nearest')
+ pl.title('Euclidean cost')
+
+ pl.subplot(1, 3, 2)
+ pl.imshow(M2, interpolation='nearest')
+ pl.title('Squared Euclidean cost')
+
+ pl.subplot(1, 3, 3)
+ pl.imshow(Mp, interpolation='nearest')
+ pl.title('Sqrt Euclidean cost')
+ pl.tight_layout()
+
+
+
.. rst-class:: sphx-glr-horizontal
@@ -28,138 +104,195 @@ https://arxiv.org/pdf/1706.07650.pdf
.. image:: /auto_examples/images/sphx_glr_plot_OT_L1_vs_L2_002.png
:scale: 47
- *
- .. image:: /auto_examples/images/sphx_glr_plot_OT_L1_vs_L2_003.png
- :scale: 47
- *
- .. image:: /auto_examples/images/sphx_glr_plot_OT_L1_vs_L2_004.png
- :scale: 47
+Dataset 1 : Plot OT Matrices
+#############################################################################
+
+
+
+.. code-block:: python
+
+
+
+
+ #%% EMD
+ G1 = ot.emd(a, b, M1)
+ G2 = ot.emd(a, b, M2)
+ Gp = ot.emd(a, b, Mp)
+
+ # OT matrices
+ pl.figure(3, figsize=(7, 3))
+
+ pl.subplot(1, 3, 1)
+ ot.plot.plot2D_samples_mat(xs, xt, G1, c=[.5, .5, 1])
+ pl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')
+ pl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples')
+ pl.axis('equal')
+ # pl.legend(loc=0)
+ pl.title('OT Euclidean')
+
+ pl.subplot(1, 3, 2)
+ ot.plot.plot2D_samples_mat(xs, xt, G2, c=[.5, .5, 1])
+ pl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')
+ pl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples')
+ pl.axis('equal')
+ # pl.legend(loc=0)
+ pl.title('OT squared Euclidean')
+
+ pl.subplot(1, 3, 3)
+ ot.plot.plot2D_samples_mat(xs, xt, Gp, c=[.5, .5, 1])
+ pl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')
+ pl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples')
+ pl.axis('equal')
+ # pl.legend(loc=0)
+ pl.title('OT sqrt Euclidean')
+ pl.tight_layout()
+
+ pl.show()
+
+
+
+
+
+.. image:: /auto_examples/images/sphx_glr_plot_OT_L1_vs_L2_005.png
+ :align: center
+
+
+
+
+Dataset 2 : Partial circle
+#############################################################################
+
+
+
+.. code-block:: python
+
+
+ n = 50 # nb samples
+ xtot = np.zeros((n + 1, 2))
+ xtot[:, 0] = np.cos(
+ (np.arange(n + 1) + 1.0) * 0.9 / (n + 2) * 2 * np.pi)
+ xtot[:, 1] = np.sin(
+ (np.arange(n + 1) + 1.0) * 0.9 / (n + 2) * 2 * np.pi)
+
+ xs = xtot[:n, :]
+ xt = xtot[1:, :]
+
+ a, b = ot.unif(n), ot.unif(n) # uniform distribution on samples
+
+ # loss matrix
+ M1 = ot.dist(xs, xt, metric='euclidean')
+ M1 /= M1.max()
+
+ # loss matrix
+ M2 = ot.dist(xs, xt, metric='sqeuclidean')
+ M2 /= M2.max()
+
+ # loss matrix
+ Mp = np.sqrt(ot.dist(xs, xt, metric='euclidean'))
+ Mp /= Mp.max()
+
+
+ # Data
+ pl.figure(4, figsize=(7, 3))
+ pl.clf()
+ pl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')
+ pl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples')
+ pl.axis('equal')
+ pl.title('Source and traget distributions')
+
+
+ # Cost matrices
+ pl.figure(5, figsize=(7, 3))
+
+ pl.subplot(1, 3, 1)
+ pl.imshow(M1, interpolation='nearest')
+ pl.title('Euclidean cost')
+
+ pl.subplot(1, 3, 2)
+ pl.imshow(M2, interpolation='nearest')
+ pl.title('Squared Euclidean cost')
+
+ pl.subplot(1, 3, 3)
+ pl.imshow(Mp, interpolation='nearest')
+ pl.title('Sqrt Euclidean cost')
+ pl.tight_layout()
+
+
+
+
+.. rst-class:: sphx-glr-horizontal
+
*
- .. image:: /auto_examples/images/sphx_glr_plot_OT_L1_vs_L2_005.png
+ .. image:: /auto_examples/images/sphx_glr_plot_OT_L1_vs_L2_007.png
:scale: 47
*
- .. image:: /auto_examples/images/sphx_glr_plot_OT_L1_vs_L2_006.png
+ .. image:: /auto_examples/images/sphx_glr_plot_OT_L1_vs_L2_008.png
:scale: 47
+Dataset 2 : Plot OT Matrices
+#############################################################################
+
+
.. code-block:: python
- # Author: Remi Flamary <remi.flamary@unice.fr>
- #
- # License: MIT License
- import numpy as np
- import matplotlib.pylab as pl
- import ot
- #%% parameters and data generation
-
- for data in range(2):
-
- if data:
- n = 20 # nb samples
- xs = np.zeros((n, 2))
- xs[:, 0] = np.arange(n) + 1
- xs[:, 1] = (np.arange(n) + 1) * -0.001 # to make it strictly convex...
-
- xt = np.zeros((n, 2))
- xt[:, 1] = np.arange(n) + 1
- else:
-
- n = 50 # nb samples
- xtot = np.zeros((n + 1, 2))
- xtot[:, 0] = np.cos(
- (np.arange(n + 1) + 1.0) * 0.9 / (n + 2) * 2 * np.pi)
- xtot[:, 1] = np.sin(
- (np.arange(n + 1) + 1.0) * 0.9 / (n + 2) * 2 * np.pi)
-
- xs = xtot[:n, :]
- xt = xtot[1:, :]
-
- a, b = ot.unif(n), ot.unif(n) # uniform distribution on samples
-
- # loss matrix
- M1 = ot.dist(xs, xt, metric='euclidean')
- M1 /= M1.max()
-
- # loss matrix
- M2 = ot.dist(xs, xt, metric='sqeuclidean')
- M2 /= M2.max()
-
- # loss matrix
- Mp = np.sqrt(ot.dist(xs, xt, metric='euclidean'))
- Mp /= Mp.max()
-
- #%% plot samples
-
- pl.figure(1 + 3 * data, figsize=(7, 3))
- pl.clf()
- pl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')
- pl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples')
- pl.axis('equal')
- pl.title('Source and traget distributions')
-
- pl.figure(2 + 3 * data, figsize=(7, 3))
-
- pl.subplot(1, 3, 1)
- pl.imshow(M1, interpolation='nearest')
- pl.title('Euclidean cost')
-
- pl.subplot(1, 3, 2)
- pl.imshow(M2, interpolation='nearest')
- pl.title('Squared Euclidean cost')
-
- pl.subplot(1, 3, 3)
- pl.imshow(Mp, interpolation='nearest')
- pl.title('Sqrt Euclidean cost')
- pl.tight_layout()
-
- #%% EMD
- G1 = ot.emd(a, b, M1)
- G2 = ot.emd(a, b, M2)
- Gp = ot.emd(a, b, Mp)
-
- pl.figure(3 + 3 * data, figsize=(7, 3))
-
- pl.subplot(1, 3, 1)
- ot.plot.plot2D_samples_mat(xs, xt, G1, c=[.5, .5, 1])
- pl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')
- pl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples')
- pl.axis('equal')
- # pl.legend(loc=0)
- pl.title('OT Euclidean')
-
- pl.subplot(1, 3, 2)
- ot.plot.plot2D_samples_mat(xs, xt, G2, c=[.5, .5, 1])
- pl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')
- pl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples')
- pl.axis('equal')
- # pl.legend(loc=0)
- pl.title('OT squared Euclidean')
-
- pl.subplot(1, 3, 3)
- ot.plot.plot2D_samples_mat(xs, xt, Gp, c=[.5, .5, 1])
- pl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')
- pl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples')
- pl.axis('equal')
- # pl.legend(loc=0)
- pl.title('OT sqrt Euclidean')
- pl.tight_layout()
+ #%% EMD
+ G1 = ot.emd(a, b, M1)
+ G2 = ot.emd(a, b, M2)
+ Gp = ot.emd(a, b, Mp)
+
+ # OT matrices
+ pl.figure(6, figsize=(7, 3))
+
+ pl.subplot(1, 3, 1)
+ ot.plot.plot2D_samples_mat(xs, xt, G1, c=[.5, .5, 1])
+ pl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')
+ pl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples')
+ pl.axis('equal')
+ # pl.legend(loc=0)
+ pl.title('OT Euclidean')
+
+ pl.subplot(1, 3, 2)
+ ot.plot.plot2D_samples_mat(xs, xt, G2, c=[.5, .5, 1])
+ pl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')
+ pl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples')
+ pl.axis('equal')
+ # pl.legend(loc=0)
+ pl.title('OT squared Euclidean')
+
+ pl.subplot(1, 3, 3)
+ ot.plot.plot2D_samples_mat(xs, xt, Gp, c=[.5, .5, 1])
+ pl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')
+ pl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples')
+ pl.axis('equal')
+ # pl.legend(loc=0)
+ pl.title('OT sqrt Euclidean')
+ pl.tight_layout()
pl.show()
-**Total running time of the script:** ( 0 minutes 1.906 seconds)
+
+
+.. image:: /auto_examples/images/sphx_glr_plot_OT_L1_vs_L2_011.png
+ :align: center
+
+
+
+
+**Total running time of the script:** ( 0 minutes 1.217 seconds)
@@ -178,4 +311,4 @@ https://arxiv.org/pdf/1706.07650.pdf
.. rst-class:: sphx-glr-signature
- `Generated by Sphinx-Gallery <http://sphinx-gallery.readthedocs.io>`_
+ `Generated by Sphinx-Gallery <https://sphinx-gallery.readthedocs.io>`_