summaryrefslogtreecommitdiff
path: root/docs/source/auto_examples/plot_WDA.ipynb
diff options
context:
space:
mode:
authorRémi Flamary <remi.flamary@gmail.com>2017-09-01 15:31:44 +0200
committerRémi Flamary <remi.flamary@gmail.com>2017-09-01 15:31:44 +0200
commit062071b20d1d40c64bb619931bd11bd28e780485 (patch)
tree74bfcd48bb65304c2a5be74c24cdff29bd82ba4b /docs/source/auto_examples/plot_WDA.ipynb
parent212f3889b1114026765cda0134e02766daa82af2 (diff)
update example with rst titles
Diffstat (limited to 'docs/source/auto_examples/plot_WDA.ipynb')
-rw-r--r--docs/source/auto_examples/plot_WDA.ipynb94
1 files changed, 92 insertions, 2 deletions
diff --git a/docs/source/auto_examples/plot_WDA.ipynb b/docs/source/auto_examples/plot_WDA.ipynb
index 5568128..8e0db41 100644
--- a/docs/source/auto_examples/plot_WDA.ipynb
+++ b/docs/source/auto_examples/plot_WDA.ipynb
@@ -15,7 +15,7 @@
},
{
"source": [
- "\n# Wasserstein Discriminant Analysis\n\n\n\n"
+ "\n# Wasserstein Discriminant Analysis\n\n\nThis example illustrate the use of WDA as proposed in [11].\n\n\n[11] Flamary, R., Cuturi, M., Courty, N., & Rakotomamonjy, A. (2016). \nWasserstein Discriminant Analysis.\n\n\n"
],
"cell_type": "markdown",
"metadata": {}
@@ -24,7 +24,97 @@
"execution_count": null,
"cell_type": "code",
"source": [
- "# Author: Remi Flamary <remi.flamary@unice.fr>\n#\n# License: MIT License\n\nimport numpy as np\nimport matplotlib.pylab as pl\n\nfrom ot.dr import wda, fda\n\n\n#%% parameters\n\nn = 1000 # nb samples in source and target datasets\nnz = 0.2\n\n# generate circle dataset\nt = np.random.rand(n) * 2 * np.pi\nys = np.floor((np.arange(n) * 1.0 / n * 3)) + 1\nxs = np.concatenate(\n (np.cos(t).reshape((-1, 1)), np.sin(t).reshape((-1, 1))), 1)\nxs = xs * ys.reshape(-1, 1) + nz * np.random.randn(n, 2)\n\nt = np.random.rand(n) * 2 * np.pi\nyt = np.floor((np.arange(n) * 1.0 / n * 3)) + 1\nxt = np.concatenate(\n (np.cos(t).reshape((-1, 1)), np.sin(t).reshape((-1, 1))), 1)\nxt = xt * yt.reshape(-1, 1) + nz * np.random.randn(n, 2)\n\nnbnoise = 8\n\nxs = np.hstack((xs, np.random.randn(n, nbnoise)))\nxt = np.hstack((xt, np.random.randn(n, nbnoise)))\n\n#%% plot samples\npl.figure(1, figsize=(6.4, 3.5))\n\npl.subplot(1, 2, 1)\npl.scatter(xt[:, 0], xt[:, 1], c=ys, marker='+', label='Source samples')\npl.legend(loc=0)\npl.title('Discriminant dimensions')\n\npl.subplot(1, 2, 2)\npl.scatter(xt[:, 2], xt[:, 3], c=ys, marker='+', label='Source samples')\npl.legend(loc=0)\npl.title('Other dimensions')\npl.tight_layout()\n\n#%% Compute FDA\np = 2\n\nPfda, projfda = fda(xs, ys, p)\n\n#%% Compute WDA\np = 2\nreg = 1e0\nk = 10\nmaxiter = 100\n\nPwda, projwda = wda(xs, ys, p, reg, k, maxiter=maxiter)\n\n#%% plot samples\n\nxsp = projfda(xs)\nxtp = projfda(xt)\n\nxspw = projwda(xs)\nxtpw = projwda(xt)\n\npl.figure(2)\n\npl.subplot(2, 2, 1)\npl.scatter(xsp[:, 0], xsp[:, 1], c=ys, marker='+', label='Projected samples')\npl.legend(loc=0)\npl.title('Projected training samples FDA')\n\npl.subplot(2, 2, 2)\npl.scatter(xtp[:, 0], xtp[:, 1], c=ys, marker='+', label='Projected samples')\npl.legend(loc=0)\npl.title('Projected test samples FDA')\n\npl.subplot(2, 2, 3)\npl.scatter(xspw[:, 0], xspw[:, 1], c=ys, marker='+', label='Projected samples')\npl.legend(loc=0)\npl.title('Projected training samples WDA')\n\npl.subplot(2, 2, 4)\npl.scatter(xtpw[:, 0], xtpw[:, 1], c=ys, marker='+', label='Projected samples')\npl.legend(loc=0)\npl.title('Projected test samples WDA')\npl.tight_layout()\n\npl.show()"
+ "# Author: Remi Flamary <remi.flamary@unice.fr>\n#\n# License: MIT License\n\nimport numpy as np\nimport matplotlib.pylab as pl\n\nfrom ot.dr import wda, fda"
+ ],
+ "outputs": [],
+ "metadata": {
+ "collapsed": false
+ }
+ },
+ {
+ "source": [
+ "Generate data\n#############################################################################\n\n"
+ ],
+ "cell_type": "markdown",
+ "metadata": {}
+ },
+ {
+ "execution_count": null,
+ "cell_type": "code",
+ "source": [
+ "#%% parameters\n\nn = 1000 # nb samples in source and target datasets\nnz = 0.2\n\n# generate circle dataset\nt = np.random.rand(n) * 2 * np.pi\nys = np.floor((np.arange(n) * 1.0 / n * 3)) + 1\nxs = np.concatenate(\n (np.cos(t).reshape((-1, 1)), np.sin(t).reshape((-1, 1))), 1)\nxs = xs * ys.reshape(-1, 1) + nz * np.random.randn(n, 2)\n\nt = np.random.rand(n) * 2 * np.pi\nyt = np.floor((np.arange(n) * 1.0 / n * 3)) + 1\nxt = np.concatenate(\n (np.cos(t).reshape((-1, 1)), np.sin(t).reshape((-1, 1))), 1)\nxt = xt * yt.reshape(-1, 1) + nz * np.random.randn(n, 2)\n\nnbnoise = 8\n\nxs = np.hstack((xs, np.random.randn(n, nbnoise)))\nxt = np.hstack((xt, np.random.randn(n, nbnoise)))"
+ ],
+ "outputs": [],
+ "metadata": {
+ "collapsed": false
+ }
+ },
+ {
+ "source": [
+ "Plot data\n#############################################################################\n\n"
+ ],
+ "cell_type": "markdown",
+ "metadata": {}
+ },
+ {
+ "execution_count": null,
+ "cell_type": "code",
+ "source": [
+ "#%% plot samples\npl.figure(1, figsize=(6.4, 3.5))\n\npl.subplot(1, 2, 1)\npl.scatter(xt[:, 0], xt[:, 1], c=ys, marker='+', label='Source samples')\npl.legend(loc=0)\npl.title('Discriminant dimensions')\n\npl.subplot(1, 2, 2)\npl.scatter(xt[:, 2], xt[:, 3], c=ys, marker='+', label='Source samples')\npl.legend(loc=0)\npl.title('Other dimensions')\npl.tight_layout()"
+ ],
+ "outputs": [],
+ "metadata": {
+ "collapsed": false
+ }
+ },
+ {
+ "source": [
+ "Compute Fisher Discriminant Analysis\n#############################################################################\n\n"
+ ],
+ "cell_type": "markdown",
+ "metadata": {}
+ },
+ {
+ "execution_count": null,
+ "cell_type": "code",
+ "source": [
+ "#%% Compute FDA\np = 2\n\nPfda, projfda = fda(xs, ys, p)"
+ ],
+ "outputs": [],
+ "metadata": {
+ "collapsed": false
+ }
+ },
+ {
+ "source": [
+ "Compute Wasserstein Discriminant Analysis\n#############################################################################\n\n"
+ ],
+ "cell_type": "markdown",
+ "metadata": {}
+ },
+ {
+ "execution_count": null,
+ "cell_type": "code",
+ "source": [
+ "#%% Compute WDA\np = 2\nreg = 1e0\nk = 10\nmaxiter = 100\n\nPwda, projwda = wda(xs, ys, p, reg, k, maxiter=maxiter)"
+ ],
+ "outputs": [],
+ "metadata": {
+ "collapsed": false
+ }
+ },
+ {
+ "source": [
+ "Plot 2D projections\n#############################################################################\n\n"
+ ],
+ "cell_type": "markdown",
+ "metadata": {}
+ },
+ {
+ "execution_count": null,
+ "cell_type": "code",
+ "source": [
+ "#%% plot samples\n\nxsp = projfda(xs)\nxtp = projfda(xt)\n\nxspw = projwda(xs)\nxtpw = projwda(xt)\n\npl.figure(2)\n\npl.subplot(2, 2, 1)\npl.scatter(xsp[:, 0], xsp[:, 1], c=ys, marker='+', label='Projected samples')\npl.legend(loc=0)\npl.title('Projected training samples FDA')\n\npl.subplot(2, 2, 2)\npl.scatter(xtp[:, 0], xtp[:, 1], c=ys, marker='+', label='Projected samples')\npl.legend(loc=0)\npl.title('Projected test samples FDA')\n\npl.subplot(2, 2, 3)\npl.scatter(xspw[:, 0], xspw[:, 1], c=ys, marker='+', label='Projected samples')\npl.legend(loc=0)\npl.title('Projected training samples WDA')\n\npl.subplot(2, 2, 4)\npl.scatter(xtpw[:, 0], xtpw[:, 1], c=ys, marker='+', label='Projected samples')\npl.legend(loc=0)\npl.title('Projected test samples WDA')\npl.tight_layout()\n\npl.show()"
],
"outputs": [],
"metadata": {