summaryrefslogtreecommitdiff
path: root/docs/source/auto_examples/plot_gromov.ipynb
diff options
context:
space:
mode:
authorRémi Flamary <remi.flamary@gmail.com>2017-09-15 13:57:01 +0200
committerRémi Flamary <remi.flamary@gmail.com>2017-09-15 13:57:01 +0200
commitdd3546baf9c59733b2109a971293eba48d2eaed3 (patch)
treedbc9c5dd126eecf537acbe7d205b91250f2bdc9b /docs/source/auto_examples/plot_gromov.ipynb
parentbad3d95523d005a4fbf64dd009c716b9dd560fe3 (diff)
add all files for doc
Diffstat (limited to 'docs/source/auto_examples/plot_gromov.ipynb')
-rw-r--r--docs/source/auto_examples/plot_gromov.ipynb126
1 files changed, 126 insertions, 0 deletions
diff --git a/docs/source/auto_examples/plot_gromov.ipynb b/docs/source/auto_examples/plot_gromov.ipynb
new file mode 100644
index 0000000..865848e
--- /dev/null
+++ b/docs/source/auto_examples/plot_gromov.ipynb
@@ -0,0 +1,126 @@
+{
+ "nbformat_minor": 0,
+ "nbformat": 4,
+ "cells": [
+ {
+ "execution_count": null,
+ "cell_type": "code",
+ "source": [
+ "%matplotlib inline"
+ ],
+ "outputs": [],
+ "metadata": {
+ "collapsed": false
+ }
+ },
+ {
+ "source": [
+ "\n# Gromov-Wasserstein example\n\n\nThis example is designed to show how to use the Gromov-Wassertsein distance\ncomputation in POT.\n\n"
+ ],
+ "cell_type": "markdown",
+ "metadata": {}
+ },
+ {
+ "execution_count": null,
+ "cell_type": "code",
+ "source": [
+ "# Author: Erwan Vautier <erwan.vautier@gmail.com>\r\n# Nicolas Courty <ncourty@irisa.fr>\r\n#\r\n# License: MIT License\r\n\r\nimport scipy as sp\r\nimport numpy as np\r\nimport matplotlib.pylab as pl\r\nfrom mpl_toolkits.mplot3d import Axes3D # noqa\r\nimport ot"
+ ],
+ "outputs": [],
+ "metadata": {
+ "collapsed": false
+ }
+ },
+ {
+ "source": [
+ "Sample two Gaussian distributions (2D and 3D)\r\n ---------------------------------------------\r\n\r\n The Gromov-Wasserstein distance allows to compute distances with samples that\r\n do not belong to the same metric space. For demonstration purpose, we sample\r\n two Gaussian distributions in 2- and 3-dimensional spaces.\r\n\n"
+ ],
+ "cell_type": "markdown",
+ "metadata": {}
+ },
+ {
+ "execution_count": null,
+ "cell_type": "code",
+ "source": [
+ "n_samples = 30 # nb samples\r\n\r\nmu_s = np.array([0, 0])\r\ncov_s = np.array([[1, 0], [0, 1]])\r\n\r\nmu_t = np.array([4, 4, 4])\r\ncov_t = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])\r\n\r\n\r\nxs = ot.datasets.get_2D_samples_gauss(n_samples, mu_s, cov_s)\r\nP = sp.linalg.sqrtm(cov_t)\r\nxt = np.random.randn(n_samples, 3).dot(P) + mu_t"
+ ],
+ "outputs": [],
+ "metadata": {
+ "collapsed": false
+ }
+ },
+ {
+ "source": [
+ "Plotting the distributions\r\n--------------------------\r\n\n"
+ ],
+ "cell_type": "markdown",
+ "metadata": {}
+ },
+ {
+ "execution_count": null,
+ "cell_type": "code",
+ "source": [
+ "fig = pl.figure()\r\nax1 = fig.add_subplot(121)\r\nax1.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')\r\nax2 = fig.add_subplot(122, projection='3d')\r\nax2.scatter(xt[:, 0], xt[:, 1], xt[:, 2], color='r')\r\npl.show()"
+ ],
+ "outputs": [],
+ "metadata": {
+ "collapsed": false
+ }
+ },
+ {
+ "source": [
+ "Compute distance kernels, normalize them and then display\r\n---------------------------------------------------------\r\n\n"
+ ],
+ "cell_type": "markdown",
+ "metadata": {}
+ },
+ {
+ "execution_count": null,
+ "cell_type": "code",
+ "source": [
+ "C1 = sp.spatial.distance.cdist(xs, xs)\r\nC2 = sp.spatial.distance.cdist(xt, xt)\r\n\r\nC1 /= C1.max()\r\nC2 /= C2.max()\r\n\r\npl.figure()\r\npl.subplot(121)\r\npl.imshow(C1)\r\npl.subplot(122)\r\npl.imshow(C2)\r\npl.show()"
+ ],
+ "outputs": [],
+ "metadata": {
+ "collapsed": false
+ }
+ },
+ {
+ "source": [
+ "Compute Gromov-Wasserstein plans and distance\r\n---------------------------------------------\r\n\n"
+ ],
+ "cell_type": "markdown",
+ "metadata": {}
+ },
+ {
+ "execution_count": null,
+ "cell_type": "code",
+ "source": [
+ "p = ot.unif(n_samples)\r\nq = ot.unif(n_samples)\r\n\r\ngw = ot.gromov_wasserstein(C1, C2, p, q, 'square_loss', epsilon=5e-4)\r\ngw_dist = ot.gromov_wasserstein2(C1, C2, p, q, 'square_loss', epsilon=5e-4)\r\n\r\nprint('Gromov-Wasserstein distances between the distribution: ' + str(gw_dist))\r\n\r\npl.figure()\r\npl.imshow(gw, cmap='jet')\r\npl.colorbar()\r\npl.show()"
+ ],
+ "outputs": [],
+ "metadata": {
+ "collapsed": false
+ }
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "name": "python2",
+ "language": "python"
+ },
+ "language_info": {
+ "mimetype": "text/x-python",
+ "nbconvert_exporter": "python",
+ "name": "python",
+ "file_extension": ".py",
+ "version": "2.7.12",
+ "pygments_lexer": "ipython2",
+ "codemirror_mode": {
+ "version": 2,
+ "name": "ipython"
+ }
+ }
+ }
+} \ No newline at end of file