summaryrefslogtreecommitdiff
path: root/examples
diff options
context:
space:
mode:
authorSlasnista <stan.chambon@gmail.com>2017-09-04 09:12:32 +0200
committerSlasnista <stan.chambon@gmail.com>2017-09-04 09:12:32 +0200
commit363c5f92a4865527320edcff97036e62a7ca28c9 (patch)
treef0d1d002b980cbae5a9e48cb7ff76785ae1e9925 /examples
parent30bfc5ce5acd98991b3d01e313d0c14f0e600b14 (diff)
doc string + example
Diffstat (limited to 'examples')
-rw-r--r--examples/da/plot_otda_semi_supervised.py142
1 files changed, 142 insertions, 0 deletions
diff --git a/examples/da/plot_otda_semi_supervised.py b/examples/da/plot_otda_semi_supervised.py
new file mode 100644
index 0000000..6e6296b
--- /dev/null
+++ b/examples/da/plot_otda_semi_supervised.py
@@ -0,0 +1,142 @@
+# -*- coding: utf-8 -*-
+"""
+============================================
+OTDA unsupervised vs semi-supervised setting
+============================================
+
+This example introduces a semi supervised domain adaptation in a 2D setting.
+It explicits the problem of semi supervised domain adaptation and introduces
+some optimal transport approaches to solve it.
+
+Quantities such as optimal couplings, greater coupling coefficients and
+transported samples are represented in order to give a visual understanding
+of what the transport methods are doing.
+"""
+
+# Authors: Remi Flamary <remi.flamary@unice.fr>
+# Stanislas Chambon <stan.chambon@gmail.com>
+#
+# License: MIT License
+
+import matplotlib.pylab as pl
+import ot
+
+
+##############################################################################
+# generate data
+##############################################################################
+
+n_samples_source = 150
+n_samples_target = 150
+
+Xs, ys = ot.datasets.get_data_classif('3gauss', n_samples_source)
+Xt, yt = ot.datasets.get_data_classif('3gauss2', n_samples_target)
+
+# Cost matrix
+M = ot.dist(Xs, Xt, metric='sqeuclidean')
+
+
+##############################################################################
+# Transport source samples onto target samples
+##############################################################################
+
+# unsupervised domain adaptation
+ot_sinkhorn_un = ot.da.SinkhornTransport(reg_e=1e-1)
+ot_sinkhorn_un.fit(Xs=Xs, Xt=Xt)
+transp_Xs_sinkhorn_un = ot_sinkhorn_un.transform(Xs=Xs)
+
+# semi-supervised domain adaptation
+ot_sinkhorn_semi = ot.da.SinkhornTransport(reg_e=1e-1)
+ot_sinkhorn_semi.fit(Xs=Xs, Xt=Xt, ys=ys, yt=yt)
+transp_Xs_sinkhorn_semi = ot_sinkhorn_semi.transform(Xs=Xs)
+
+# semi supervised DA uses available labaled target samples to modify the cost
+# matrix involved in the OT problem. The cost of transporting a source sample
+# of class A onto a target sample of class B != A is set to infinite, or a
+# very large value
+
+
+##############################################################################
+# Fig 1 : plots source and target samples + matrix of pairwise distance
+##############################################################################
+
+pl.figure(1, figsize=(10, 10))
+pl.subplot(2, 2, 1)
+pl.scatter(Xs[:, 0], Xs[:, 1], c=ys, marker='+', label='Source samples')
+pl.xticks([])
+pl.yticks([])
+pl.legend(loc=0)
+pl.title('Source samples')
+
+pl.subplot(2, 2, 2)
+pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', label='Target samples')
+pl.xticks([])
+pl.yticks([])
+pl.legend(loc=0)
+pl.title('Target samples')
+
+pl.subplot(2, 2, 3)
+pl.imshow(ot_sinkhorn_un.cost_, interpolation='nearest')
+pl.xticks([])
+pl.yticks([])
+pl.title('Cost matrix - unsupervised DA')
+
+pl.subplot(2, 2, 4)
+pl.imshow(ot_sinkhorn_semi.cost_, interpolation='nearest')
+pl.xticks([])
+pl.yticks([])
+pl.title('Cost matrix - semisupervised DA')
+
+pl.tight_layout()
+
+# the optimal coupling in the semi-supervised DA case will exhibit " shape
+# similar" to the cost matrix, (block diagonal matrix)
+
+##############################################################################
+# Fig 2 : plots optimal couplings for the different methods
+##############################################################################
+
+pl.figure(2, figsize=(8, 4))
+
+pl.subplot(1, 2, 1)
+pl.imshow(ot_sinkhorn_un.coupling_, interpolation='nearest')
+pl.xticks([])
+pl.yticks([])
+pl.title('Optimal coupling\nUnsupervised DA')
+
+pl.subplot(1, 2, 2)
+pl.imshow(ot_sinkhorn_semi.coupling_, interpolation='nearest')
+pl.xticks([])
+pl.yticks([])
+pl.title('Optimal coupling\nSemi-supervised DA')
+
+pl.tight_layout()
+
+
+##############################################################################
+# Fig 3 : plot transported samples
+##############################################################################
+
+# display transported samples
+pl.figure(4, figsize=(8, 4))
+pl.subplot(1, 2, 1)
+pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o',
+ label='Target samples', alpha=0.5)
+pl.scatter(transp_Xs_sinkhorn_un[:, 0], transp_Xs_sinkhorn_un[:, 1], c=ys,
+ marker='+', label='Transp samples', s=30)
+pl.title('Transported samples\nEmdTransport')
+pl.legend(loc=0)
+pl.xticks([])
+pl.yticks([])
+
+pl.subplot(1, 2, 2)
+pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o',
+ label='Target samples', alpha=0.5)
+pl.scatter(transp_Xs_sinkhorn_semi[:, 0], transp_Xs_sinkhorn_semi[:, 1], c=ys,
+ marker='+', label='Transp samples', s=30)
+pl.title('Transported samples\nSinkhornTransport')
+pl.xticks([])
+pl.yticks([])
+
+pl.tight_layout()
+pl.show()