summaryrefslogtreecommitdiff
path: root/ot/bregman.py
diff options
context:
space:
mode:
authorievred <ievgen.redko@univ-st-etienne.fr>2020-04-02 15:29:12 +0200
committerievred <ievgen.redko@univ-st-etienne.fr>2020-04-02 15:29:12 +0200
commit9200af5d795517b0772c10bb3d16022dd1a12791 (patch)
tree3220647499ea28b24c1126317700747e6c12c522 /ot/bregman.py
parent6b8477d1c08696a08a1b71642712d83e560f9623 (diff)
laplace v1
Diffstat (limited to 'ot/bregman.py')
-rw-r--r--ot/bregman.py72
1 files changed, 44 insertions, 28 deletions
diff --git a/ot/bregman.py b/ot/bregman.py
index fb959e9..951d3ce 100644
--- a/ot/bregman.py
+++ b/ot/bregman.py
@@ -19,6 +19,7 @@ import warnings
from .utils import unif, dist
from scipy.optimize import fmin_l_bfgs_b
+
def sinkhorn(a, b, M, reg, method='sinkhorn', numItermax=1000,
stopThr=1e-9, verbose=False, log=False, **kwargs):
r"""
@@ -539,12 +540,12 @@ def greenkhorn(a, b, M, reg, numItermax=10000, stopThr=1e-9, verbose=False,
old_v = v[i_2]
v[i_2] = b[i_2] / (K[:, i_2].T.dot(u))
G[:, i_2] = u * K[:, i_2] * v[i_2]
- #aviol = (G@one_m - a)
- #aviol_2 = (G.T@one_n - b)
+ # aviol = (G@one_m - a)
+ # aviol_2 = (G.T@one_n - b)
viol += (-old_v + v[i_2]) * K[:, i_2] * u
viol_2[i_2] = v[i_2] * K[:, i_2].dot(u) - b[i_2]
- #print('b',np.max(abs(aviol -viol)),np.max(abs(aviol_2 - viol_2)))
+ # print('b',np.max(abs(aviol -viol)),np.max(abs(aviol_2 - viol_2)))
if stopThr_val <= stopThr:
break
@@ -715,7 +716,7 @@ def sinkhorn_stabilized(a, b, M, reg, numItermax=1000, tau=1e3, stopThr=1e-9,
if np.abs(u).max() > tau or np.abs(v).max() > tau:
if n_hists:
alpha, beta = alpha + reg * \
- np.max(np.log(u), 1), beta + reg * np.max(np.log(v))
+ np.max(np.log(u), 1), beta + reg * np.max(np.log(v))
else:
alpha, beta = alpha + reg * np.log(u), beta + reg * np.log(v)
if n_hists:
@@ -940,7 +941,7 @@ def sinkhorn_epsilon_scaling(a, b, M, reg, numItermax=100, epsilon0=1e4,
# the 10th iterations
transp = G
err = np.linalg.norm(
- (np.sum(transp, axis=0) - b))**2 + np.linalg.norm((np.sum(transp, axis=1) - a))**2
+ (np.sum(transp, axis=0) - b)) ** 2 + np.linalg.norm((np.sum(transp, axis=1) - a)) ** 2
if log:
log['err'].append(err)
@@ -966,7 +967,7 @@ def sinkhorn_epsilon_scaling(a, b, M, reg, numItermax=100, epsilon0=1e4,
def geometricBar(weights, alldistribT):
"""return the weighted geometric mean of distributions"""
- assert(len(weights) == alldistribT.shape[1])
+ assert (len(weights) == alldistribT.shape[1])
return np.exp(np.dot(np.log(alldistribT), weights.T))
@@ -1108,7 +1109,7 @@ def barycenter_sinkhorn(A, M, reg, weights=None, numItermax=1000,
if weights is None:
weights = np.ones(A.shape[1]) / A.shape[1]
else:
- assert(len(weights) == A.shape[1])
+ assert (len(weights) == A.shape[1])
if log:
log = {'err': []}
@@ -1206,7 +1207,7 @@ def barycenter_stabilized(A, M, reg, tau=1e10, weights=None, numItermax=1000,
if weights is None:
weights = np.ones(n_hists) / n_hists
else:
- assert(len(weights) == A.shape[1])
+ assert (len(weights) == A.shape[1])
if log:
log = {'err': []}
@@ -1334,7 +1335,7 @@ def convolutional_barycenter2d(A, reg, weights=None, numItermax=10000,
if weights is None:
weights = np.ones(A.shape[0]) / A.shape[0]
else:
- assert(len(weights) == A.shape[0])
+ assert (len(weights) == A.shape[0])
if log:
log = {'err': []}
@@ -1350,11 +1351,11 @@ def convolutional_barycenter2d(A, reg, weights=None, numItermax=10000,
# this is equivalent to blurring on horizontal then vertical directions
t = np.linspace(0, 1, A.shape[1])
[Y, X] = np.meshgrid(t, t)
- xi1 = np.exp(-(X - Y)**2 / reg)
+ xi1 = np.exp(-(X - Y) ** 2 / reg)
t = np.linspace(0, 1, A.shape[2])
[Y, X] = np.meshgrid(t, t)
- xi2 = np.exp(-(X - Y)**2 / reg)
+ xi2 = np.exp(-(X - Y) ** 2 / reg)
def K(x):
return np.dot(np.dot(xi1, x), xi2)
@@ -1501,6 +1502,7 @@ def unmix(a, D, M, M0, h0, reg, reg0, alpha, numItermax=1000,
else:
return np.sum(K0, axis=1)
+
def jcpot_barycenter(Xs, Ys, Xt, reg, metric='sqeuclidean', numItermax=100,
stopThr=1e-6, verbose=False, log=False, **kwargs):
r'''Joint OT and proportion estimation for multi-source target shift as proposed in [27]
@@ -1658,6 +1660,7 @@ def jcpot_barycenter(Xs, Ys, Xt, reg, metric='sqeuclidean', numItermax=100,
else:
return couplings, bary
+
def empirical_sinkhorn(X_s, X_t, reg, a=None, b=None, metric='sqeuclidean',
numIterMax=10000, stopThr=1e-9, verbose=False,
log=False, **kwargs):
@@ -1749,7 +1752,8 @@ def empirical_sinkhorn(X_s, X_t, reg, a=None, b=None, metric='sqeuclidean',
return pi
-def empirical_sinkhorn2(X_s, X_t, reg, a=None, b=None, metric='sqeuclidean', numIterMax=10000, stopThr=1e-9, verbose=False, log=False, **kwargs):
+def empirical_sinkhorn2(X_s, X_t, reg, a=None, b=None, metric='sqeuclidean', numIterMax=10000, stopThr=1e-9,
+ verbose=False, log=False, **kwargs):
r'''
Solve the entropic regularization optimal transport problem from empirical
data and return the OT loss
@@ -1831,14 +1835,17 @@ def empirical_sinkhorn2(X_s, X_t, reg, a=None, b=None, metric='sqeuclidean', num
M = dist(X_s, X_t, metric=metric)
if log:
- sinkhorn_loss, log = sinkhorn2(a, b, M, reg, numItermax=numIterMax, stopThr=stopThr, verbose=verbose, log=log, **kwargs)
+ sinkhorn_loss, log = sinkhorn2(a, b, M, reg, numItermax=numIterMax, stopThr=stopThr, verbose=verbose, log=log,
+ **kwargs)
return sinkhorn_loss, log
else:
- sinkhorn_loss = sinkhorn2(a, b, M, reg, numItermax=numIterMax, stopThr=stopThr, verbose=verbose, log=log, **kwargs)
+ sinkhorn_loss = sinkhorn2(a, b, M, reg, numItermax=numIterMax, stopThr=stopThr, verbose=verbose, log=log,
+ **kwargs)
return sinkhorn_loss
-def empirical_sinkhorn_divergence(X_s, X_t, reg, a=None, b=None, metric='sqeuclidean', numIterMax=10000, stopThr=1e-9, verbose=False, log=False, **kwargs):
+def empirical_sinkhorn_divergence(X_s, X_t, reg, a=None, b=None, metric='sqeuclidean', numIterMax=10000, stopThr=1e-9,
+ verbose=False, log=False, **kwargs):
r'''
Compute the sinkhorn divergence loss from empirical data
@@ -1924,11 +1931,14 @@ def empirical_sinkhorn_divergence(X_s, X_t, reg, a=None, b=None, metric='sqeucli
.. [23] Aude Genevay, Gabriel Peyré, Marco Cuturi, Learning Generative Models with Sinkhorn Divergences, Proceedings of the Twenty-First International Conference on Artficial Intelligence and Statistics, (AISTATS) 21, 2018
'''
if log:
- sinkhorn_loss_ab, log_ab = empirical_sinkhorn2(X_s, X_t, reg, a, b, metric=metric, numIterMax=numIterMax, stopThr=1e-9, verbose=verbose, log=log, **kwargs)
+ sinkhorn_loss_ab, log_ab = empirical_sinkhorn2(X_s, X_t, reg, a, b, metric=metric, numIterMax=numIterMax,
+ stopThr=1e-9, verbose=verbose, log=log, **kwargs)
- sinkhorn_loss_a, log_a = empirical_sinkhorn2(X_s, X_s, reg, a, b, metric=metric, numIterMax=numIterMax, stopThr=1e-9, verbose=verbose, log=log, **kwargs)
+ sinkhorn_loss_a, log_a = empirical_sinkhorn2(X_s, X_s, reg, a, b, metric=metric, numIterMax=numIterMax,
+ stopThr=1e-9, verbose=verbose, log=log, **kwargs)
- sinkhorn_loss_b, log_b = empirical_sinkhorn2(X_t, X_t, reg, a, b, metric=metric, numIterMax=numIterMax, stopThr=1e-9, verbose=verbose, log=log, **kwargs)
+ sinkhorn_loss_b, log_b = empirical_sinkhorn2(X_t, X_t, reg, a, b, metric=metric, numIterMax=numIterMax,
+ stopThr=1e-9, verbose=verbose, log=log, **kwargs)
sinkhorn_div = sinkhorn_loss_ab - 1 / 2 * (sinkhorn_loss_a + sinkhorn_loss_b)
@@ -1943,11 +1953,14 @@ def empirical_sinkhorn_divergence(X_s, X_t, reg, a=None, b=None, metric='sqeucli
return max(0, sinkhorn_div), log
else:
- sinkhorn_loss_ab = empirical_sinkhorn2(X_s, X_t, reg, a, b, metric=metric, numIterMax=numIterMax, stopThr=1e-9, verbose=verbose, log=log, **kwargs)
+ sinkhorn_loss_ab = empirical_sinkhorn2(X_s, X_t, reg, a, b, metric=metric, numIterMax=numIterMax, stopThr=1e-9,
+ verbose=verbose, log=log, **kwargs)
- sinkhorn_loss_a = empirical_sinkhorn2(X_s, X_s, reg, a, b, metric=metric, numIterMax=numIterMax, stopThr=1e-9, verbose=verbose, log=log, **kwargs)
+ sinkhorn_loss_a = empirical_sinkhorn2(X_s, X_s, reg, a, b, metric=metric, numIterMax=numIterMax, stopThr=1e-9,
+ verbose=verbose, log=log, **kwargs)
- sinkhorn_loss_b = empirical_sinkhorn2(X_t, X_t, reg, a, b, metric=metric, numIterMax=numIterMax, stopThr=1e-9, verbose=verbose, log=log, **kwargs)
+ sinkhorn_loss_b = empirical_sinkhorn2(X_t, X_t, reg, a, b, metric=metric, numIterMax=numIterMax, stopThr=1e-9,
+ verbose=verbose, log=log, **kwargs)
sinkhorn_div = sinkhorn_loss_ab - 1 / 2 * (sinkhorn_loss_a + sinkhorn_loss_b)
return max(0, sinkhorn_div)
@@ -2039,7 +2052,8 @@ def screenkhorn(a, b, M, reg, ns_budget=None, nt_budget=None, uniform=False, res
try:
import bottleneck
except ImportError:
- warnings.warn("Bottleneck module is not installed. Install it from https://pypi.org/project/Bottleneck/ for better performance.")
+ warnings.warn(
+ "Bottleneck module is not installed. Install it from https://pypi.org/project/Bottleneck/ for better performance.")
bottleneck = np
a = np.asarray(a, dtype=np.float64)
@@ -2173,10 +2187,11 @@ def screenkhorn(a, b, M, reg, ns_budget=None, nt_budget=None, uniform=False, res
# box constraints in L-BFGS-B (see Proposition 1 in [26])
bounds_u = [(max(a_I_min / ((nt - nt_budget) * epsilon + nt_budget * (b_J_max / (
- ns * epsilon * kappa * K_min))), epsilon / kappa), a_I_max / (nt * epsilon * K_min))] * ns_budget
+ ns * epsilon * kappa * K_min))), epsilon / kappa), a_I_max / (nt * epsilon * K_min))] * ns_budget
- bounds_v = [(max(b_J_min / ((ns - ns_budget) * epsilon + ns_budget * (kappa * a_I_max / (nt * epsilon * K_min))),
- epsilon * kappa), b_J_max / (ns * epsilon * K_min))] * nt_budget
+ bounds_v = [(
+ max(b_J_min / ((ns - ns_budget) * epsilon + ns_budget * (kappa * a_I_max / (nt * epsilon * K_min))),
+ epsilon * kappa), b_J_max / (ns * epsilon * K_min))] * nt_budget
# pre-calculated constants for the objective
vec_eps_IJc = epsilon * kappa * (K_IJc * np.ones(nt - nt_budget).reshape((1, -1))).sum(axis=1)
@@ -2225,7 +2240,8 @@ def screenkhorn(a, b, M, reg, ns_budget=None, nt_budget=None, uniform=False, res
return usc, vsc
def screened_obj(usc, vsc):
- part_IJ = np.dot(np.dot(usc, K_IJ), vsc) - kappa * np.dot(a_I, np.log(usc)) - (1. / kappa) * np.dot(b_J, np.log(vsc))
+ part_IJ = np.dot(np.dot(usc, K_IJ), vsc) - kappa * np.dot(a_I, np.log(usc)) - (1. / kappa) * np.dot(b_J,
+ np.log(vsc))
part_IJc = np.dot(usc, vec_eps_IJc)
part_IcJ = np.dot(vec_eps_IcJ, vsc)
psi_epsilon = part_IJ + part_IJc + part_IcJ
@@ -2247,9 +2263,9 @@ def screenkhorn(a, b, M, reg, ns_budget=None, nt_budget=None, uniform=False, res
g = np.hstack([g_u, g_v])
return f, g
- #----------------------------------------------------------------------------------------------------------------#
+ # ----------------------------------------------------------------------------------------------------------------#
# Step 2: L-BFGS-B solver #
- #----------------------------------------------------------------------------------------------------------------#
+ # ----------------------------------------------------------------------------------------------------------------#
u0, v0 = restricted_sinkhorn(u0, v0)
theta0 = np.hstack([u0, v0])