summaryrefslogtreecommitdiff
path: root/ot/lp/network_simplex_simple.h
diff options
context:
space:
mode:
authorRémi Flamary <remi.flamary@gmail.com>2016-10-27 12:34:42 +0200
committerRémi Flamary <remi.flamary@gmail.com>2016-10-27 12:34:42 +0200
commite083f90ad09a3bd42beffea1e996f3b4a9b3ff76 (patch)
treef329e51af871ef1f415a87d4f9820c50c03fc4fc /ot/lp/network_simplex_simple.h
parent708aadb3396129c56cf128be04b7e87304b95070 (diff)
rename emd module to lp
Diffstat (limited to 'ot/lp/network_simplex_simple.h')
-rw-r--r--ot/lp/network_simplex_simple.h1543
1 files changed, 1543 insertions, 0 deletions
diff --git a/ot/lp/network_simplex_simple.h b/ot/lp/network_simplex_simple.h
new file mode 100644
index 0000000..64856a0
--- /dev/null
+++ b/ot/lp/network_simplex_simple.h
@@ -0,0 +1,1543 @@
+/* -*- mode: C++; indent-tabs-mode: nil; -*-
+ *
+ *
+ * This file has been adapted by Nicolas Bonneel (2013),
+ * from network_simplex.h from LEMON, a generic C++ optimization library,
+ * to implement a lightweight network simplex for mass transport, more
+ * memory efficient that the original file. A previous version of this file
+ * is used as part of the Displacement Interpolation project,
+ * Web: http://www.cs.ubc.ca/labs/imager/tr/2011/DisplacementInterpolation/
+ *
+ *
+ **** Original file Copyright Notice :
+ *
+ * Copyright (C) 2003-2010
+ * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
+ * (Egervary Research Group on Combinatorial Optimization, EGRES).
+ *
+ * Permission to use, modify and distribute this software is granted
+ * provided that this copyright notice appears in all copies. For
+ * precise terms see the accompanying LICENSE file.
+ *
+ * This software is provided "AS IS" with no warranty of any kind,
+ * express or implied, and with no claim as to its suitability for any
+ * purpose.
+ *
+ */
+
+#ifndef LEMON_NETWORK_SIMPLEX_SIMPLE_H
+#define LEMON_NETWORK_SIMPLEX_SIMPLE_H
+#define DEBUG_LVL 0
+#define EPSILON 10*2.2204460492503131e-016
+#define MAX_DEBUG_ITER 100000
+
+
+/// \ingroup min_cost_flow_algs
+///
+/// \file
+/// \brief Network Simplex algorithm for finding a minimum cost flow.
+
+// if your compiler has troubles with stdext or hashmaps, just comment the following line to use a slower std::map instead
+//#define HASHMAP
+
+#include <vector>
+#include <limits>
+#include <algorithm>
+#ifdef HASHMAP
+#include <hash_map>
+#else
+#include <map>
+#endif
+#include <cmath>
+//#include "core.h"
+//#include "lmath.h"
+
+//#include "sparse_array_n.h"
+#include "full_bipartitegraph.h"
+
+#define INVALIDNODE -1
+#define INVALID (-1)
+
+namespace lemon {
+
+
+ template <typename T>
+ class ProxyObject;
+
+ template<typename T>
+ class SparseValueVector
+ {
+ public:
+ SparseValueVector(int n=0)
+ {
+ }
+ void resize(int n=0){};
+ T operator[](const int id) const
+ {
+#ifdef HASHMAP
+ typename stdext::hash_map<int,T>::const_iterator it = data.find(id);
+#else
+ typename std::map<int,T>::const_iterator it = data.find(id);
+#endif
+ if (it==data.end())
+ return 0;
+ else
+ return it->second;
+ }
+
+ ProxyObject<T> operator[](const int id)
+ {
+ return ProxyObject<T>( this, id );
+ }
+
+ //private:
+#ifdef HASHMAP
+ stdext::hash_map<int,T> data;
+#else
+ std::map<int,T> data;
+#endif
+
+ };
+
+ template <typename T>
+ class ProxyObject {
+ public:
+ ProxyObject( SparseValueVector<T> *v, int idx ){_v=v; _idx=idx;};
+ ProxyObject<T> & operator=( const T &v ) {
+ // If we get here, we know that operator[] was called to perform a write access,
+ // so we can insert an item in the vector if needed
+ if (v!=0)
+ _v->data[_idx]=v;
+ return *this;
+ }
+
+ operator T() {
+ // If we get here, we know that operator[] was called to perform a read access,
+ // so we can simply return the existing object
+#ifdef HASHMAP
+ typename stdext::hash_map<int,T>::iterator it = _v->data.find(_idx);
+#else
+ typename std::map<int,T>::iterator it = _v->data.find(_idx);
+#endif
+ if (it==_v->data.end())
+ return 0;
+ else
+ return it->second;
+ }
+
+ void operator+=(T val)
+ {
+ if (val==0) return;
+#ifdef HASHMAP
+ typename stdext::hash_map<int,T>::iterator it = _v->data.find(_idx);
+#else
+ typename std::map<int,T>::iterator it = _v->data.find(_idx);
+#endif
+ if (it==_v->data.end())
+ _v->data[_idx] = val;
+ else
+ {
+ T sum = it->second + val;
+ if (sum==0)
+ _v->data.erase(it);
+ else
+ it->second = sum;
+ }
+ }
+ void operator-=(T val)
+ {
+ if (val==0) return;
+#ifdef HASHMAP
+ typename stdext::hash_map<int,T>::iterator it = _v->data.find(_idx);
+#else
+ typename std::map<int,T>::iterator it = _v->data.find(_idx);
+#endif
+ if (it==_v->data.end())
+ _v->data[_idx] = -val;
+ else
+ {
+ T sum = it->second - val;
+ if (sum==0)
+ _v->data.erase(it);
+ else
+ it->second = sum;
+ }
+ }
+
+ SparseValueVector<T> *_v;
+ int _idx;
+ };
+
+
+
+ /// \addtogroup min_cost_flow_algs
+ /// @{
+
+ /// \brief Implementation of the primal Network Simplex algorithm
+ /// for finding a \ref min_cost_flow "minimum cost flow".
+ ///
+ /// \ref NetworkSimplexSimple implements the primal Network Simplex algorithm
+ /// for finding a \ref min_cost_flow "minimum cost flow"
+ /// \ref amo93networkflows, \ref dantzig63linearprog,
+ /// \ref kellyoneill91netsimplex.
+ /// This algorithm is a highly efficient specialized version of the
+ /// linear programming simplex method directly for the minimum cost
+ /// flow problem.
+ ///
+ /// In general, %NetworkSimplexSimple is the fastest implementation available
+ /// in LEMON for this problem.
+ /// Moreover, it supports both directions of the supply/demand inequality
+ /// constraints. For more information, see \ref SupplyType.
+ ///
+ /// Most of the parameters of the problem (except for the digraph)
+ /// can be given using separate functions, and the algorithm can be
+ /// executed using the \ref run() function. If some parameters are not
+ /// specified, then default values will be used.
+ ///
+ /// \tparam GR The digraph type the algorithm runs on.
+ /// \tparam V The number type used for flow amounts, capacity bounds
+ /// and supply values in the algorithm. By default, it is \c int.
+ /// \tparam C The number type used for costs and potentials in the
+ /// algorithm. By default, it is the same as \c V.
+ ///
+ /// \warning Both number types must be signed and all input data must
+ /// be integer.
+ ///
+ /// \note %NetworkSimplexSimple provides five different pivot rule
+ /// implementations, from which the most efficient one is used
+ /// by default. For more information, see \ref PivotRule.
+ template <typename GR, typename V = int, typename C = V, typename NodesType = unsigned short int>
+ class NetworkSimplexSimple
+ {
+ public:
+
+ /// \brief Constructor.
+ ///
+ /// The constructor of the class.
+ ///
+ /// \param graph The digraph the algorithm runs on.
+ /// \param arc_mixing Indicate if the arcs have to be stored in a
+ /// mixed order in the internal data structure.
+ /// In special cases, it could lead to better overall performance,
+ /// but it is usually slower. Therefore it is disabled by default.
+ NetworkSimplexSimple(const GR& graph, bool arc_mixing, int nbnodes, long long nb_arcs,double maxiters) :
+ _graph(graph), //_arc_id(graph),
+ _arc_mixing(arc_mixing), _init_nb_nodes(nbnodes), _init_nb_arcs(nb_arcs),
+ MAX(std::numeric_limits<Value>::max()),
+ INF(std::numeric_limits<Value>::has_infinity ?
+ std::numeric_limits<Value>::infinity() : MAX)
+ {
+ // Reset data structures
+ reset();
+ max_iter=maxiters;
+ }
+
+ /// The type of the flow amounts, capacity bounds and supply values
+ typedef V Value;
+ /// The type of the arc costs
+ typedef C Cost;
+
+ public:
+
+ /// \brief Problem type constants for the \c run() function.
+ ///
+ /// Enum type containing the problem type constants that can be
+ /// returned by the \ref run() function of the algorithm.
+ enum ProblemType {
+ /// The problem has no feasible solution (flow).
+ INFEASIBLE,
+ /// The problem has optimal solution (i.e. it is feasible and
+ /// bounded), and the algorithm has found optimal flow and node
+ /// potentials (primal and dual solutions).
+ OPTIMAL,
+ /// The objective function of the problem is unbounded, i.e.
+ /// there is a directed cycle having negative total cost and
+ /// infinite upper bound.
+ UNBOUNDED
+ };
+
+ /// \brief Constants for selecting the type of the supply constraints.
+ ///
+ /// Enum type containing constants for selecting the supply type,
+ /// i.e. the direction of the inequalities in the supply/demand
+ /// constraints of the \ref min_cost_flow "minimum cost flow problem".
+ ///
+ /// The default supply type is \c GEQ, the \c LEQ type can be
+ /// selected using \ref supplyType().
+ /// The equality form is a special case of both supply types.
+ enum SupplyType {
+ /// This option means that there are <em>"greater or equal"</em>
+ /// supply/demand constraints in the definition of the problem.
+ GEQ,
+ /// This option means that there are <em>"less or equal"</em>
+ /// supply/demand constraints in the definition of the problem.
+ LEQ
+ };
+
+
+
+ private:
+
+ double max_iter;
+ TEMPLATE_DIGRAPH_TYPEDEFS(GR);
+
+ typedef std::vector<int> IntVector;
+ typedef std::vector<NodesType> UHalfIntVector;
+ typedef std::vector<Value> ValueVector;
+ typedef std::vector<Cost> CostVector;
+ // typedef SparseValueVector<Cost> CostVector;
+ typedef std::vector<char> BoolVector;
+ // Note: vector<char> is used instead of vector<bool> for efficiency reasons
+
+ // State constants for arcs
+ enum ArcState {
+ STATE_UPPER = -1,
+ STATE_TREE = 0,
+ STATE_LOWER = 1
+ };
+
+ typedef std::vector<signed char> StateVector;
+ // Note: vector<signed char> is used instead of vector<ArcState> for
+ // efficiency reasons
+
+ private:
+
+ // Data related to the underlying digraph
+ const GR &_graph;
+ int _node_num;
+ int _arc_num;
+ int _all_arc_num;
+ int _search_arc_num;
+
+ // Parameters of the problem
+ SupplyType _stype;
+ Value _sum_supply;
+
+ inline int _node_id(int n) const {return _node_num-n-1;} ;
+
+ //IntArcMap _arc_id;
+ UHalfIntVector _source;
+ UHalfIntVector _target;
+ bool _arc_mixing;
+ public:
+ // Node and arc data
+ CostVector _cost;
+ ValueVector _supply;
+ ValueVector _flow;
+ //SparseValueVector<Value> _flow;
+ CostVector _pi;
+
+
+ private:
+ // Data for storing the spanning tree structure
+ IntVector _parent;
+ IntVector _pred;
+ IntVector _thread;
+ IntVector _rev_thread;
+ IntVector _succ_num;
+ IntVector _last_succ;
+ IntVector _dirty_revs;
+ BoolVector _forward;
+ StateVector _state;
+ int _root;
+
+ // Temporary data used in the current pivot iteration
+ int in_arc, join, u_in, v_in, u_out, v_out;
+ int first, second, right, last;
+ int stem, par_stem, new_stem;
+ Value delta;
+
+ const Value MAX;
+
+ int mixingCoeff;
+
+ public:
+
+ /// \brief Constant for infinite upper bounds (capacities).
+ ///
+ /// Constant for infinite upper bounds (capacities).
+ /// It is \c std::numeric_limits<Value>::infinity() if available,
+ /// \c std::numeric_limits<Value>::max() otherwise.
+ const Value INF;
+
+ private:
+
+ // thank you to DVK and MizardX from StackOverflow for this function!
+ inline int sequence(int k) const {
+ int smallv = (k > num_total_big_subsequence_numbers) & 1;
+
+ k -= num_total_big_subsequence_numbers * smallv;
+ int subsequence_length2 = subsequence_length- smallv;
+ int subsequence_num = (k / subsequence_length2) + num_big_subseqiences * smallv;
+ int subsequence_offset = (k % subsequence_length2) * mixingCoeff;
+
+ return subsequence_offset + subsequence_num;
+ }
+ int subsequence_length;
+ int num_big_subseqiences;
+ int num_total_big_subsequence_numbers;
+
+ inline int getArcID(const Arc &arc) const
+ {
+ //int n = _arc_num-arc._id-1;
+ int n = _arc_num-GR::id(arc)-1;
+
+ //int a = mixingCoeff*(n%mixingCoeff) + n/mixingCoeff;
+ //int b = _arc_id[arc];
+ if (_arc_mixing)
+ return sequence(n);
+ else
+ return n;
+ }
+
+ // finally unused because too slow
+ inline int getSource(const int arc) const
+ {
+ //int a = _source[arc];
+ //return a;
+
+ int n = _arc_num-arc-1;
+ if (_arc_mixing)
+ n = mixingCoeff*(n%mixingCoeff) + n/mixingCoeff;
+
+ int b;
+ if (n>=0)
+ b = _node_id(_graph.source(GR::arcFromId( n ) ));
+ else
+ {
+ n = arc+1-_arc_num;
+ if ( n<=_node_num)
+ b = _node_num;
+ else
+ if ( n>=_graph._n1)
+ b = _graph._n1;
+ else
+ b = _graph._n1-n;
+ }
+
+ return b;
+ }
+
+
+
+ // Implementation of the Block Search pivot rule
+ class BlockSearchPivotRule
+ {
+ private:
+
+ // References to the NetworkSimplexSimple class
+ const UHalfIntVector &_source;
+ const UHalfIntVector &_target;
+ const CostVector &_cost;
+ const StateVector &_state;
+ const CostVector &_pi;
+ int &_in_arc;
+ int _search_arc_num;
+
+ // Pivot rule data
+ int _block_size;
+ int _next_arc;
+ NetworkSimplexSimple &_ns;
+
+ public:
+
+ // Constructor
+ BlockSearchPivotRule(NetworkSimplexSimple &ns) :
+ _source(ns._source), _target(ns._target),
+ _cost(ns._cost), _state(ns._state), _pi(ns._pi),
+ _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
+ _next_arc(0),_ns(ns)
+ {
+ // The main parameters of the pivot rule
+ const double BLOCK_SIZE_FACTOR = 1.0;
+ const int MIN_BLOCK_SIZE = 10;
+
+ _block_size = std::max( int(BLOCK_SIZE_FACTOR *
+ std::sqrt(double(_search_arc_num))),
+ MIN_BLOCK_SIZE );
+ }
+ // Find next entering arc
+ bool findEnteringArc() {
+ Cost c, min = 0;
+ int e;
+ int cnt = _block_size;
+ double a;
+ for (e = _next_arc; e != _search_arc_num; ++e) {
+ c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
+ if (c < min) {
+ min = c;
+ _in_arc = e;
+ }
+ if (--cnt == 0) {
+ a=fabs(_pi[_source[_in_arc]])>fabs(_pi[_target[_in_arc]]) ? fabs(_pi[_source[_in_arc]]):fabs(_pi[_target[_in_arc]]);
+ a=a>fabs(_cost[_in_arc])?a:fabs(_cost[_in_arc]);
+ if (min < -EPSILON*a) goto search_end;
+ cnt = _block_size;
+ }
+ }
+ for (e = 0; e != _next_arc; ++e) {
+ c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
+ if (c < min) {
+ min = c;
+ _in_arc = e;
+ }
+ if (--cnt == 0) {
+ a=fabs(_pi[_source[_in_arc]])>fabs(_pi[_target[_in_arc]]) ? fabs(_pi[_source[_in_arc]]):fabs(_pi[_target[_in_arc]]);
+ a=a>fabs(_cost[_in_arc])?a:fabs(_cost[_in_arc]);
+ if (min < -EPSILON*a) goto search_end;
+ cnt = _block_size;
+ }
+ }
+ a=fabs(_pi[_source[_in_arc]])>fabs(_pi[_target[_in_arc]]) ? fabs(_pi[_source[_in_arc]]):fabs(_pi[_target[_in_arc]]);
+ a=a>fabs(_cost[_in_arc])?a:fabs(_cost[_in_arc]);
+ if (min >= -EPSILON*a) return false;
+
+ search_end:
+ _next_arc = e;
+ return true;
+ }
+
+ }; //class BlockSearchPivotRule
+
+
+
+ public:
+
+
+
+ int _init_nb_nodes;
+ long long _init_nb_arcs;
+
+ /// \name Parameters
+ /// The parameters of the algorithm can be specified using these
+ /// functions.
+
+ /// @{
+
+
+ /// \brief Set the costs of the arcs.
+ ///
+ /// This function sets the costs of the arcs.
+ /// If it is not used before calling \ref run(), the costs
+ /// will be set to \c 1 on all arcs.
+ ///
+ /// \param map An arc map storing the costs.
+ /// Its \c Value type must be convertible to the \c Cost type
+ /// of the algorithm.
+ ///
+ /// \return <tt>(*this)</tt>
+ template<typename CostMap>
+ NetworkSimplexSimple& costMap(const CostMap& map) {
+ Arc a; _graph.first(a);
+ for (; a != INVALID; _graph.next(a)) {
+ _cost[getArcID(a)] = map[a];
+ }
+ return *this;
+ }
+
+
+ /// \brief Set the costs of one arc.
+ ///
+ /// This function sets the costs of one arcs.
+ /// Done for memory reasons
+ ///
+ /// \param arc An arc.
+ /// \param arc A cost
+ ///
+ /// \return <tt>(*this)</tt>
+ template<typename Value>
+ NetworkSimplexSimple& setCost(const Arc& arc, const Value cost) {
+ _cost[getArcID(arc)] = cost;
+ return *this;
+ }
+
+
+ /// \brief Set the supply values of the nodes.
+ ///
+ /// This function sets the supply values of the nodes.
+ /// If neither this function nor \ref stSupply() is used before
+ /// calling \ref run(), the supply of each node will be set to zero.
+ ///
+ /// \param map A node map storing the supply values.
+ /// Its \c Value type must be convertible to the \c Value type
+ /// of the algorithm.
+ ///
+ /// \return <tt>(*this)</tt>
+ template<typename SupplyMap>
+ NetworkSimplexSimple& supplyMap(const SupplyMap& map) {
+ Node n; _graph.first(n);
+ for (; n != INVALIDNODE; _graph.next(n)) {
+ _supply[_node_id(n)] = map[n];
+ }
+ return *this;
+ }
+ template<typename SupplyMap>
+ NetworkSimplexSimple& supplyMap(const SupplyMap* map1, int n1, const SupplyMap* map2, int n2) {
+ Node n; _graph.first(n);
+ for (; n != INVALIDNODE; _graph.next(n)) {
+ if (n<n1)
+ _supply[_node_id(n)] = map1[n];
+ else
+ _supply[_node_id(n)] = map2[n-n1];
+ }
+ return *this;
+ }
+ template<typename SupplyMap>
+ NetworkSimplexSimple& supplyMapAll(SupplyMap val1, int n1, SupplyMap val2, int n2) {
+ Node n; _graph.first(n);
+ for (; n != INVALIDNODE; _graph.next(n)) {
+ if (n<n1)
+ _supply[_node_id(n)] = val1;
+ else
+ _supply[_node_id(n)] = val2;
+ }
+ return *this;
+ }
+
+ /// \brief Set single source and target nodes and a supply value.
+ ///
+ /// This function sets a single source node and a single target node
+ /// and the required flow value.
+ /// If neither this function nor \ref supplyMap() is used before
+ /// calling \ref run(), the supply of each node will be set to zero.
+ ///
+ /// Using this function has the same effect as using \ref supplyMap()
+ /// with such a map in which \c k is assigned to \c s, \c -k is
+ /// assigned to \c t and all other nodes have zero supply value.
+ ///
+ /// \param s The source node.
+ /// \param t The target node.
+ /// \param k The required amount of flow from node \c s to node \c t
+ /// (i.e. the supply of \c s and the demand of \c t).
+ ///
+ /// \return <tt>(*this)</tt>
+ NetworkSimplexSimple& stSupply(const Node& s, const Node& t, Value k) {
+ for (int i = 0; i != _node_num; ++i) {
+ _supply[i] = 0;
+ }
+ _supply[_node_id(s)] = k;
+ _supply[_node_id(t)] = -k;
+ return *this;
+ }
+
+ /// \brief Set the type of the supply constraints.
+ ///
+ /// This function sets the type of the supply/demand constraints.
+ /// If it is not used before calling \ref run(), the \ref GEQ supply
+ /// type will be used.
+ ///
+ /// For more information, see \ref SupplyType.
+ ///
+ /// \return <tt>(*this)</tt>
+ NetworkSimplexSimple& supplyType(SupplyType supply_type) {
+ _stype = supply_type;
+ return *this;
+ }
+
+ /// @}
+
+ /// \name Execution Control
+ /// The algorithm can be executed using \ref run().
+
+ /// @{
+
+ /// \brief Run the algorithm.
+ ///
+ /// This function runs the algorithm.
+ /// The paramters can be specified using functions \ref lowerMap(),
+ /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(),
+ /// \ref supplyType().
+ /// For example,
+ /// \code
+ /// NetworkSimplexSimple<ListDigraph> ns(graph);
+ /// ns.lowerMap(lower).upperMap(upper).costMap(cost)
+ /// .supplyMap(sup).run();
+ /// \endcode
+ ///
+ /// This function can be called more than once. All the given parameters
+ /// are kept for the next call, unless \ref resetParams() or \ref reset()
+ /// is used, thus only the modified parameters have to be set again.
+ /// If the underlying digraph was also modified after the construction
+ /// of the class (or the last \ref reset() call), then the \ref reset()
+ /// function must be called.
+ ///
+ /// \param pivot_rule The pivot rule that will be used during the
+ /// algorithm. For more information, see \ref PivotRule.
+ ///
+ /// \return \c INFEASIBLE if no feasible flow exists,
+ /// \n \c OPTIMAL if the problem has optimal solution
+ /// (i.e. it is feasible and bounded), and the algorithm has found
+ /// optimal flow and node potentials (primal and dual solutions),
+ /// \n \c UNBOUNDED if the objective function of the problem is
+ /// unbounded, i.e. there is a directed cycle having negative total
+ /// cost and infinite upper bound.
+ ///
+ /// \see ProblemType, PivotRule
+ /// \see resetParams(), reset()
+ ProblemType run() {
+#if DEBUG_LVL>0
+ mexPrintf("OPTIMAL = %d\nINFEASIBLE = %d\nUNBOUNDED = %d\n",OPTIMAL,INFEASIBLE,UNBOUNDED);
+ mexEvalString("drawnow;");
+#endif
+
+ if (!init()) return INFEASIBLE;
+#if DEBUG_LVL>0
+ mexPrintf("Init done, starting iterations\n");
+ mexEvalString("drawnow;");
+#endif
+ return start();
+ }
+
+ /// \brief Reset all the parameters that have been given before.
+ ///
+ /// This function resets all the paramaters that have been given
+ /// before using functions \ref lowerMap(), \ref upperMap(),
+ /// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType().
+ ///
+ /// It is useful for multiple \ref run() calls. Basically, all the given
+ /// parameters are kept for the next \ref run() call, unless
+ /// \ref resetParams() or \ref reset() is used.
+ /// If the underlying digraph was also modified after the construction
+ /// of the class or the last \ref reset() call, then the \ref reset()
+ /// function must be used, otherwise \ref resetParams() is sufficient.
+ ///
+ /// For example,
+ /// \code
+ /// NetworkSimplexSimple<ListDigraph> ns(graph);
+ ///
+ /// // First run
+ /// ns.lowerMap(lower).upperMap(upper).costMap(cost)
+ /// .supplyMap(sup).run();
+ ///
+ /// // Run again with modified cost map (resetParams() is not called,
+ /// // so only the cost map have to be set again)
+ /// cost[e] += 100;
+ /// ns.costMap(cost).run();
+ ///
+ /// // Run again from scratch using resetParams()
+ /// // (the lower bounds will be set to zero on all arcs)
+ /// ns.resetParams();
+ /// ns.upperMap(capacity).costMap(cost)
+ /// .supplyMap(sup).run();
+ /// \endcode
+ ///
+ /// \return <tt>(*this)</tt>
+ ///
+ /// \see reset(), run()
+ NetworkSimplexSimple& resetParams() {
+ for (int i = 0; i != _node_num; ++i) {
+ _supply[i] = 0;
+ }
+ for (int i = 0; i != _arc_num; ++i) {
+ _cost[i] = 1;
+ }
+ _stype = GEQ;
+ return *this;
+ }
+
+
+
+ int divid (int x, int y)
+ {
+ return (x-x%y)/y;
+ }
+
+ /// \brief Reset the internal data structures and all the parameters
+ /// that have been given before.
+ ///
+ /// This function resets the internal data structures and all the
+ /// paramaters that have been given before using functions \ref lowerMap(),
+ /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(),
+ /// \ref supplyType().
+ ///
+ /// It is useful for multiple \ref run() calls. Basically, all the given
+ /// parameters are kept for the next \ref run() call, unless
+ /// \ref resetParams() or \ref reset() is used.
+ /// If the underlying digraph was also modified after the construction
+ /// of the class or the last \ref reset() call, then the \ref reset()
+ /// function must be used, otherwise \ref resetParams() is sufficient.
+ ///
+ /// See \ref resetParams() for examples.
+ ///
+ /// \return <tt>(*this)</tt>
+ ///
+ /// \see resetParams(), run()
+ NetworkSimplexSimple& reset() {
+ // Resize vectors
+ _node_num = _init_nb_nodes;
+ _arc_num = _init_nb_arcs;
+ int all_node_num = _node_num + 1;
+ int max_arc_num = _arc_num + 2 * _node_num;
+
+ _source.resize(max_arc_num);
+ _target.resize(max_arc_num);
+
+ _cost.resize(max_arc_num);
+ _supply.resize(all_node_num);
+ _flow.resize(max_arc_num);
+ _pi.resize(all_node_num);
+
+ _parent.resize(all_node_num);
+ _pred.resize(all_node_num);
+ _forward.resize(all_node_num);
+ _thread.resize(all_node_num);
+ _rev_thread.resize(all_node_num);
+ _succ_num.resize(all_node_num);
+ _last_succ.resize(all_node_num);
+ _state.resize(max_arc_num);
+
+
+ //_arc_mixing=false;
+ if (_arc_mixing) {
+ // Store the arcs in a mixed order
+ int k = std::max(int(std::sqrt(double(_arc_num))), 10);
+ mixingCoeff = k;
+ subsequence_length = _arc_num / mixingCoeff + 1;
+ num_big_subseqiences = _arc_num % mixingCoeff;
+ num_total_big_subsequence_numbers = subsequence_length * num_big_subseqiences;
+
+ int i = 0, j = 0;
+ Arc a; _graph.first(a);
+ for (; a != INVALID; _graph.next(a)) {
+ _source[i] = _node_id(_graph.source(a));
+ _target[i] = _node_id(_graph.target(a));
+ //_arc_id[a] = i;
+ if ((i += k) >= _arc_num) i = ++j;
+ }
+ } else {
+ // Store the arcs in the original order
+ int i = 0;
+ Arc a; _graph.first(a);
+ for (; a != INVALID; _graph.next(a), ++i) {
+ _source[i] = _node_id(_graph.source(a));
+ _target[i] = _node_id(_graph.target(a));
+ //_arc_id[a] = i;
+ }
+ }
+
+ // Reset parameters
+ resetParams();
+ return *this;
+ }
+
+ /// @}
+
+ /// \name Query Functions
+ /// The results of the algorithm can be obtained using these
+ /// functions.\n
+ /// The \ref run() function must be called before using them.
+
+ /// @{
+
+ /// \brief Return the total cost of the found flow.
+ ///
+ /// This function returns the total cost of the found flow.
+ /// Its complexity is O(e).
+ ///
+ /// \note The return type of the function can be specified as a
+ /// template parameter. For example,
+ /// \code
+ /// ns.totalCost<double>();
+ /// \endcode
+ /// It is useful if the total cost cannot be stored in the \c Cost
+ /// type of the algorithm, which is the default return type of the
+ /// function.
+ ///
+ /// \pre \ref run() must be called before using this function.
+ /*template <typename Number>
+ Number totalCost() const {
+ Number c = 0;
+ for (ArcIt a(_graph); a != INVALID; ++a) {
+ int i = getArcID(a);
+ c += Number(_flow[i]) * Number(_cost[i]);
+ }
+ return c;
+ }*/
+
+ template <typename Number>
+ Number totalCost() const {
+ Number c = 0;
+
+ /*#ifdef HASHMAP
+ typename stdext::hash_map<int, Value>::const_iterator it;
+ #else
+ typename std::map<int, Value>::const_iterator it;
+ #endif
+ for (it = _flow.data.begin(); it!=_flow.data.end(); ++it)
+ c += Number(it->second) * Number(_cost[it->first]);
+ return c;*/
+
+ for (int i=0; i<_flow.size(); i++)
+ c += _flow[i] * Number(_cost[i]);
+ return c;
+
+ }
+
+#ifndef DOXYGEN
+ Cost totalCost() const {
+ return totalCost<Cost>();
+ }
+#endif
+
+ /// \brief Return the flow on the given arc.
+ ///
+ /// This function returns the flow on the given arc.
+ ///
+ /// \pre \ref run() must be called before using this function.
+ Value flow(const Arc& a) const {
+ return _flow[getArcID(a)];
+ }
+
+ /// \brief Return the flow map (the primal solution).
+ ///
+ /// This function copies the flow value on each arc into the given
+ /// map. The \c Value type of the algorithm must be convertible to
+ /// the \c Value type of the map.
+ ///
+ /// \pre \ref run() must be called before using this function.
+ template <typename FlowMap>
+ void flowMap(FlowMap &map) const {
+ Arc a; _graph.first(a);
+ for (; a != INVALID; _graph.next(a)) {
+ map.set(a, _flow[getArcID(a)]);
+ }
+ }
+
+ /// \brief Return the potential (dual value) of the given node.
+ ///
+ /// This function returns the potential (dual value) of the
+ /// given node.
+ ///
+ /// \pre \ref run() must be called before using this function.
+ Cost potential(const Node& n) const {
+ return _pi[_node_id(n)];
+ }
+
+ /// \brief Return the potential map (the dual solution).
+ ///
+ /// This function copies the potential (dual value) of each node
+ /// into the given map.
+ /// The \c Cost type of the algorithm must be convertible to the
+ /// \c Value type of the map.
+ ///
+ /// \pre \ref run() must be called before using this function.
+ template <typename PotentialMap>
+ void potentialMap(PotentialMap &map) const {
+ Node n; _graph.first(n);
+ for (; n != INVALID; _graph.next(n)) {
+ map.set(n, _pi[_node_id(n)]);
+ }
+ }
+
+ /// @}
+
+ private:
+
+ // Initialize internal data structures
+ bool init() {
+ if (_node_num == 0) return false;
+ /*
+ // Check the sum of supply values
+ _sum_supply = 0;
+ for (int i = 0; i != _node_num; ++i) {
+ _sum_supply += _supply[i];
+ }
+ if ( !((_stype == GEQ && _sum_supply <= _epsilon ) ||
+ (_stype == LEQ && _sum_supply >= -_epsilon )) ) return false;
+ */
+
+ // Initialize artifical cost
+ Cost ART_COST;
+ if (std::numeric_limits<Cost>::is_exact) {
+ ART_COST = std::numeric_limits<Cost>::max() / 2 + 1;
+ } else {
+ ART_COST = 0;
+ for (int i = 0; i != _arc_num; ++i) {
+ if (_cost[i] > ART_COST) ART_COST = _cost[i];
+ }
+ ART_COST = (ART_COST + 1) * _node_num;
+ }
+
+ // Initialize arc maps
+ for (int i = 0; i != _arc_num; ++i) {
+ //_flow[i] = 0; //by default, the sparse matrix is empty
+ _state[i] = STATE_LOWER;
+ }
+
+ // Set data for the artificial root node
+ _root = _node_num;
+ _parent[_root] = -1;
+ _pred[_root] = -1;
+ _thread[_root] = 0;
+ _rev_thread[0] = _root;
+ _succ_num[_root] = _node_num + 1;
+ _last_succ[_root] = _root - 1;
+ _supply[_root] = -_sum_supply;
+ _pi[_root] = 0;
+
+ // Add artificial arcs and initialize the spanning tree data structure
+ if (_sum_supply == 0) {
+ // EQ supply constraints
+ _search_arc_num = _arc_num;
+ _all_arc_num = _arc_num + _node_num;
+ for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
+ _parent[u] = _root;
+ _pred[u] = e;
+ _thread[u] = u + 1;
+ _rev_thread[u + 1] = u;
+ _succ_num[u] = 1;
+ _last_succ[u] = u;
+ _state[e] = STATE_TREE;
+ if (_supply[u] >= 0) {
+ _forward[u] = true;
+ _pi[u] = 0;
+ _source[e] = u;
+ _target[e] = _root;
+ _flow[e] = _supply[u];
+ _cost[e] = 0;
+ } else {
+ _forward[u] = false;
+ _pi[u] = ART_COST;
+ _source[e] = _root;
+ _target[e] = u;
+ _flow[e] = -_supply[u];
+ _cost[e] = ART_COST;
+ }
+ }
+ }
+ else if (_sum_supply > 0) {
+ // LEQ supply constraints
+ _search_arc_num = _arc_num + _node_num;
+ int f = _arc_num + _node_num;
+ for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
+ _parent[u] = _root;
+ _thread[u] = u + 1;
+ _rev_thread[u + 1] = u;
+ _succ_num[u] = 1;
+ _last_succ[u] = u;
+ if (_supply[u] >= 0) {
+ _forward[u] = true;
+ _pi[u] = 0;
+ _pred[u] = e;
+ _source[e] = u;
+ _target[e] = _root;
+ _flow[e] = _supply[u];
+ _cost[e] = 0;
+ _state[e] = STATE_TREE;
+ } else {
+ _forward[u] = false;
+ _pi[u] = ART_COST;
+ _pred[u] = f;
+ _source[f] = _root;
+ _target[f] = u;
+ _flow[f] = -_supply[u];
+ _cost[f] = ART_COST;
+ _state[f] = STATE_TREE;
+ _source[e] = u;
+ _target[e] = _root;
+ //_flow[e] = 0; //by default, the sparse matrix is empty
+ _cost[e] = 0;
+ _state[e] = STATE_LOWER;
+ ++f;
+ }
+ }
+ _all_arc_num = f;
+ }
+ else {
+ // GEQ supply constraints
+ _search_arc_num = _arc_num + _node_num;
+ int f = _arc_num + _node_num;
+ for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
+ _parent[u] = _root;
+ _thread[u] = u + 1;
+ _rev_thread[u + 1] = u;
+ _succ_num[u] = 1;
+ _last_succ[u] = u;
+ if (_supply[u] <= 0) {
+ _forward[u] = false;
+ _pi[u] = 0;
+ _pred[u] = e;
+ _source[e] = _root;
+ _target[e] = u;
+ _flow[e] = -_supply[u];
+ _cost[e] = 0;
+ _state[e] = STATE_TREE;
+ } else {
+ _forward[u] = true;
+ _pi[u] = -ART_COST;
+ _pred[u] = f;
+ _source[f] = u;
+ _target[f] = _root;
+ _flow[f] = _supply[u];
+ _state[f] = STATE_TREE;
+ _cost[f] = ART_COST;
+ _source[e] = _root;
+ _target[e] = u;
+ //_flow[e] = 0; //by default, the sparse matrix is empty
+ _cost[e] = 0;
+ _state[e] = STATE_LOWER;
+ ++f;
+ }
+ }
+ _all_arc_num = f;
+ }
+
+ return true;
+ }
+
+ // Find the join node
+ void findJoinNode() {
+ int u = _source[in_arc];
+ int v = _target[in_arc];
+ while (u != v) {
+ if (_succ_num[u] < _succ_num[v]) {
+ u = _parent[u];
+ } else {
+ v = _parent[v];
+ }
+ }
+ join = u;
+ }
+
+ // Find the leaving arc of the cycle and returns true if the
+ // leaving arc is not the same as the entering arc
+ bool findLeavingArc() {
+ // Initialize first and second nodes according to the direction
+ // of the cycle
+ if (_state[in_arc] == STATE_LOWER) {
+ first = _source[in_arc];
+ second = _target[in_arc];
+ } else {
+ first = _target[in_arc];
+ second = _source[in_arc];
+ }
+ delta = INF;
+ int result = 0;
+ Value d;
+ int e;
+
+ // Search the cycle along the path form the first node to the root
+ for (int u = first; u != join; u = _parent[u]) {
+ e = _pred[u];
+ d = _forward[u] ? _flow[e] : INF ;
+ if (d < delta) {
+ delta = d;
+ u_out = u;
+ result = 1;
+ }
+ }
+ // Search the cycle along the path form the second node to the root
+ for (int u = second; u != join; u = _parent[u]) {
+ e = _pred[u];
+ d = _forward[u] ? INF : _flow[e];
+ if (d <= delta) {
+ delta = d;
+ u_out = u;
+ result = 2;
+ }
+ }
+
+ if (result == 1) {
+ u_in = first;
+ v_in = second;
+ } else {
+ u_in = second;
+ v_in = first;
+ }
+ return result != 0;
+ }
+
+ // Change _flow and _state vectors
+ void changeFlow(bool change) {
+ // Augment along the cycle
+ if (delta > 0) {
+ Value val = _state[in_arc] * delta;
+ _flow[in_arc] += val;
+ for (int u = _source[in_arc]; u != join; u = _parent[u]) {
+ _flow[_pred[u]] += _forward[u] ? -val : val;
+ }
+ for (int u = _target[in_arc]; u != join; u = _parent[u]) {
+ _flow[_pred[u]] += _forward[u] ? val : -val;
+ }
+ }
+ // Update the state of the entering and leaving arcs
+ if (change) {
+ _state[in_arc] = STATE_TREE;
+ _state[_pred[u_out]] =
+ (_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER;
+ } else {
+ _state[in_arc] = -_state[in_arc];
+ }
+ }
+
+ // Update the tree structure
+ void updateTreeStructure() {
+ int u, w;
+ int old_rev_thread = _rev_thread[u_out];
+ int old_succ_num = _succ_num[u_out];
+ int old_last_succ = _last_succ[u_out];
+ v_out = _parent[u_out];
+
+ u = _last_succ[u_in]; // the last successor of u_in
+ right = _thread[u]; // the node after it
+
+ // Handle the case when old_rev_thread equals to v_in
+ // (it also means that join and v_out coincide)
+ if (old_rev_thread == v_in) {
+ last = _thread[_last_succ[u_out]];
+ } else {
+ last = _thread[v_in];
+ }
+
+ // Update _thread and _parent along the stem nodes (i.e. the nodes
+ // between u_in and u_out, whose parent have to be changed)
+ _thread[v_in] = stem = u_in;
+ _dirty_revs.clear();
+ _dirty_revs.push_back(v_in);
+ par_stem = v_in;
+ while (stem != u_out) {
+ // Insert the next stem node into the thread list
+ new_stem = _parent[stem];
+ _thread[u] = new_stem;
+ _dirty_revs.push_back(u);
+
+ // Remove the subtree of stem from the thread list
+ w = _rev_thread[stem];
+ _thread[w] = right;
+ _rev_thread[right] = w;
+
+ // Change the parent node and shift stem nodes
+ _parent[stem] = par_stem;
+ par_stem = stem;
+ stem = new_stem;
+
+ // Update u and right
+ u = _last_succ[stem] == _last_succ[par_stem] ?
+ _rev_thread[par_stem] : _last_succ[stem];
+ right = _thread[u];
+ }
+ _parent[u_out] = par_stem;
+ _thread[u] = last;
+ _rev_thread[last] = u;
+ _last_succ[u_out] = u;
+
+ // Remove the subtree of u_out from the thread list except for
+ // the case when old_rev_thread equals to v_in
+ // (it also means that join and v_out coincide)
+ if (old_rev_thread != v_in) {
+ _thread[old_rev_thread] = right;
+ _rev_thread[right] = old_rev_thread;
+ }
+
+ // Update _rev_thread using the new _thread values
+ for (int i = 0; i != int(_dirty_revs.size()); ++i) {
+ u = _dirty_revs[i];
+ _rev_thread[_thread[u]] = u;
+ }
+
+ // Update _pred, _forward, _last_succ and _succ_num for the
+ // stem nodes from u_out to u_in
+ int tmp_sc = 0, tmp_ls = _last_succ[u_out];
+ u = u_out;
+ while (u != u_in) {
+ w = _parent[u];
+ _pred[u] = _pred[w];
+ _forward[u] = !_forward[w];
+ tmp_sc += _succ_num[u] - _succ_num[w];
+ _succ_num[u] = tmp_sc;
+ _last_succ[w] = tmp_ls;
+ u = w;
+ }
+ _pred[u_in] = in_arc;
+ _forward[u_in] = (u_in == _source[in_arc]);
+ _succ_num[u_in] = old_succ_num;
+
+ // Set limits for updating _last_succ form v_in and v_out
+ // towards the root
+ int up_limit_in = -1;
+ int up_limit_out = -1;
+ if (_last_succ[join] == v_in) {
+ up_limit_out = join;
+ } else {
+ up_limit_in = join;
+ }
+
+ // Update _last_succ from v_in towards the root
+ for (u = v_in; u != up_limit_in && _last_succ[u] == v_in;
+ u = _parent[u]) {
+ _last_succ[u] = _last_succ[u_out];
+ }
+ // Update _last_succ from v_out towards the root
+ if (join != old_rev_thread && v_in != old_rev_thread) {
+ for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
+ u = _parent[u]) {
+ _last_succ[u] = old_rev_thread;
+ }
+ } else {
+ for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
+ u = _parent[u]) {
+ _last_succ[u] = _last_succ[u_out];
+ }
+ }
+
+ // Update _succ_num from v_in to join
+ for (u = v_in; u != join; u = _parent[u]) {
+ _succ_num[u] += old_succ_num;
+ }
+ // Update _succ_num from v_out to join
+ for (u = v_out; u != join; u = _parent[u]) {
+ _succ_num[u] -= old_succ_num;
+ }
+ }
+
+ // Update potentials
+ void updatePotential() {
+ Cost sigma = _forward[u_in] ?
+ _pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] :
+ _pi[v_in] - _pi[u_in] + _cost[_pred[u_in]];
+ // Update potentials in the subtree, which has been moved
+ int end = _thread[_last_succ[u_in]];
+ for (int u = u_in; u != end; u = _thread[u]) {
+ _pi[u] += sigma;
+ }
+ }
+
+ // Heuristic initial pivots
+ bool initialPivots() {
+ Value curr, total = 0;
+ std::vector<Node> supply_nodes, demand_nodes;
+ Node u; _graph.first(u);
+ for (; u != INVALIDNODE; _graph.next(u)) {
+ curr = _supply[_node_id(u)];
+ if (curr > 0) {
+ total += curr;
+ supply_nodes.push_back(u);
+ }
+ else if (curr < 0) {
+ demand_nodes.push_back(u);
+ }
+ }
+ if (_sum_supply > 0) total -= _sum_supply;
+ if (total <= 0) return true;
+
+ IntVector arc_vector;
+ if (_sum_supply >= 0) {
+ if (supply_nodes.size() == 1 && demand_nodes.size() == 1) {
+ // Perform a reverse graph search from the sink to the source
+ //typename GR::template NodeMap<bool> reached(_graph, false);
+ BoolVector reached(_node_num, false);
+ Node s = supply_nodes[0], t = demand_nodes[0];
+ std::vector<Node> stack;
+ reached[t] = true;
+ stack.push_back(t);
+ while (!stack.empty()) {
+ Node u, v = stack.back();
+ stack.pop_back();
+ if (v == s) break;
+ Arc a; _graph.firstIn(a, v);
+ for (; a != INVALID; _graph.nextIn(a)) {
+ if (reached[u = _graph.source(a)]) continue;
+ int j = getArcID(a);
+ if (INF >= total) {
+ arc_vector.push_back(j);
+ reached[u] = true;
+ stack.push_back(u);
+ }
+ }
+ }
+ } else {
+ // Find the min. cost incomming arc for each demand node
+ for (int i = 0; i != int(demand_nodes.size()); ++i) {
+ Node v = demand_nodes[i];
+ Cost c, min_cost = std::numeric_limits<Cost>::max();
+ Arc min_arc = INVALID;
+ Arc a; _graph.firstIn(a, v);
+ for (; a != INVALID; _graph.nextIn(a)) {
+ c = _cost[getArcID(a)];
+ if (c < min_cost) {
+ min_cost = c;
+ min_arc = a;
+ }
+ }
+ if (min_arc != INVALID) {
+ arc_vector.push_back(getArcID(min_arc));
+ }
+ }
+ }
+ } else {
+ // Find the min. cost outgoing arc for each supply node
+ for (int i = 0; i != int(supply_nodes.size()); ++i) {
+ Node u = supply_nodes[i];
+ Cost c, min_cost = std::numeric_limits<Cost>::max();
+ Arc min_arc = INVALID;
+ Arc a; _graph.firstOut(a, u);
+ for (; a != INVALID; _graph.nextOut(a)) {
+ c = _cost[getArcID(a)];
+ if (c < min_cost) {
+ min_cost = c;
+ min_arc = a;
+ }
+ }
+ if (min_arc != INVALID) {
+ arc_vector.push_back(getArcID(min_arc));
+ }
+ }
+ }
+
+ // Perform heuristic initial pivots
+ for (int i = 0; i != int(arc_vector.size()); ++i) {
+ in_arc = arc_vector[i];
+ // l'erreur est probablement ici...
+ if (_state[in_arc] * (_cost[in_arc] + _pi[_source[in_arc]] -
+ _pi[_target[in_arc]]) >= 0) continue;
+ findJoinNode();
+ bool change = findLeavingArc();
+ if (delta >= MAX) return false;
+ changeFlow(change);
+ if (change) {
+ updateTreeStructure();
+ updatePotential();
+ }
+ }
+ return true;
+ }
+
+ // Execute the algorithm
+ ProblemType start() {
+ return start<BlockSearchPivotRule>();
+ }
+
+ template <typename PivotRuleImpl>
+ ProblemType start() {
+ PivotRuleImpl pivot(*this);
+ double prevCost=-1;
+
+ // Perform heuristic initial pivots
+ if (!initialPivots()) return UNBOUNDED;
+
+#if DEBUG_LVL>0
+ int niter=0;
+#endif
+ int iter_number=0;
+ //pivot.setDantzig(true);
+ // Execute the Network Simplex algorithm
+ while (pivot.findEnteringArc()) {
+ if(++iter_number>=max_iter&&max_iter>0){
+ char errMess[1000];
+ // sprintf( errMess, "RESULT MIGHT BE INACURATE\nMax number of iteration reached, currently \%d. Sometimes iterations go on in cycle even though the solution has been reached, to check if it's the case here have a look at the minimal reduced cost. If it is very close to machine precision, you might actually have the correct solution, if not try setting the maximum number of iterations a bit higher",iter_number );
+ // mexWarnMsgTxt(errMess);
+ break;
+ }
+#if DEBUG_LVL>0
+ if(niter>MAX_DEBUG_ITER)
+ break;
+ if(++niter%1000==0||niter%1000==1){
+ double curCost=totalCost();
+ double sumFlow=0;
+ double a;
+ a= (fabs(_pi[_source[in_arc]])>=fabs(_pi[_target[in_arc]])) ? fabs(_pi[_source[in_arc]]) : fabs(_pi[_target[in_arc]]);
+ a=a>=fabs(_cost[in_arc])?a:fabs(_cost[in_arc]);
+ for (int i=0; i<_flow.size(); i++) {
+ sumFlow+=_state[i]*_flow[i];
+ }
+ mexPrintf("Sum of the flow %.100f\n%d iterations, current cost=%.20f\nReduced cost=%.30f\nPrecision =%.30f\n",sumFlow,niter, curCost,_state[in_arc] * (_cost[in_arc] + _pi[_source[in_arc]] -_pi[_target[in_arc]]), -EPSILON*(a));
+ mexPrintf("Arc in = (%d,%d)\n",_node_id(_source[in_arc]),_node_id(_target[in_arc]));
+ mexPrintf("Supplies = (%f,%f)\n",_supply[_source[in_arc]],_supply[_target[in_arc]]);
+
+ mexPrintf("%.30f\n%.30f\n%.30f\n%.30f\n%",_cost[in_arc],_pi[_source[in_arc]],_pi[_target[in_arc]],a);
+ mexEvalString("drawnow;");
+ }
+#endif
+
+ findJoinNode();
+ bool change = findLeavingArc();
+ if (delta >= MAX) return UNBOUNDED;
+ changeFlow(change);
+ if (change) {
+ updateTreeStructure();
+ updatePotential();
+ }
+#if DEBUG_LVL>0
+ else{
+ mexPrintf("No change\n");
+ }
+#endif
+#if DEBUG_LVL>1
+ mexPrintf("Arc in = (%d,%d)\n",_source[in_arc],_target[in_arc]);
+#endif
+
+ }
+
+
+#if DEBUG_LVL>0
+ double curCost=totalCost();
+ double sumFlow=0;
+ double a;
+ a= (fabs(_pi[_source[in_arc]])>=fabs(_pi[_target[in_arc]])) ? fabs(_pi[_source[in_arc]]) : fabs(_pi[_target[in_arc]]);
+ a=a>=fabs(_cost[in_arc])?a:fabs(_cost[in_arc]);
+ for (int i=0; i<_flow.size(); i++) {
+ sumFlow+=_state[i]*_flow[i];
+ }
+ mexPrintf("Sum of the flow %.100f\n%d iterations, current cost=%.20f\nReduced cost=%.30f\nPrecision =%.30f",sumFlow,niter, curCost,_state[in_arc] * (_cost[in_arc] + _pi[_source[in_arc]] -_pi[_target[in_arc]]), -EPSILON*(a));
+ mexPrintf("Arc in = (%d,%d)\n",_node_id(_source[in_arc]),_node_id(_target[in_arc]));
+ mexPrintf("Supplies = (%f,%f)\n",_supply[_source[in_arc]],_supply[_target[in_arc]]);
+
+ mexEvalString("drawnow;");
+#endif
+
+#if DEBUG_LVL>1
+ double sumFlow=0;
+ for (int i=0; i<_flow.size(); i++) {
+ sumFlow+=_state[i]*_flow[i];
+ if (_state[i]==STATE_TREE) {
+ mexPrintf("Non zero value at (%d,%d)\n",_node_num+1-_source[i],_node_num+1-_target[i]);
+ }
+ }
+ mexPrintf("Sum of the flow %.100f\n%d iterations, current cost=%.20f\n",sumFlow,niter, totalCost());
+ mexEvalString("drawnow;");
+#endif
+ // Check feasibility
+ for (int e = _search_arc_num; e != _all_arc_num; ++e) {
+ if (_flow[e] != 0){
+ if (abs(_flow[e]) > EPSILON)
+ return INFEASIBLE;
+ else
+ _flow[e]=0;
+
+ }
+ }
+
+ // Shift potentials to meet the requirements of the GEQ/LEQ type
+ // optimality conditions
+ if (_sum_supply == 0) {
+ if (_stype == GEQ) {
+ Cost max_pot = -std::numeric_limits<Cost>::max();
+ for (int i = 0; i != _node_num; ++i) {
+ if (_pi[i] > max_pot) max_pot = _pi[i];
+ }
+ if (max_pot > 0) {
+ for (int i = 0; i != _node_num; ++i)
+ _pi[i] -= max_pot;
+ }
+ } else {
+ Cost min_pot = std::numeric_limits<Cost>::max();
+ for (int i = 0; i != _node_num; ++i) {
+ if (_pi[i] < min_pot) min_pot = _pi[i];
+ }
+ if (min_pot < 0) {
+ for (int i = 0; i != _node_num; ++i)
+ _pi[i] -= min_pot;
+ }
+ }
+ }
+
+ return OPTIMAL;
+ }
+
+ }; //class NetworkSimplexSimple
+
+ ///@}
+
+} //namespace lemon
+
+#endif //LEMON_NETWORK_SIMPLEX_H