summaryrefslogtreecommitdiff
path: root/ot/sliced.py
diff options
context:
space:
mode:
authorAdrienCorenflos <adrien.corenflos@gmail.com>2020-10-22 09:28:53 +0100
committerGitHub <noreply@github.com>2020-10-22 10:28:53 +0200
commit78b44af2434f494c8f9e4c8c91003fbc0e1d4415 (patch)
tree013002f0a65918cee5eb95648965d4361f0c3dc2 /ot/sliced.py
parent7adc1b1aa73c55dc07983ff08dcb23fd71e9e8b6 (diff)
[MRG] Sliced wasserstein (#203)
* example for log treatment in bregman.py * Improve doc * Revert "example for log treatment in bregman.py" This reverts commit 9f51c14e * Add comments by Flamary * Delete repetitive description * Added raw string to avoid pbs with backslashes * Implements sliced wasserstein * Changed formatting of string for py3.5 support * Docstest, expected 0.0 and not 0. * Adressed comments by @rflamary * No 3d plot here * add sliced to the docs * Incorporate comments by @rflamary * add link to pdf Co-authored-by: RĂ©mi Flamary <remi.flamary@gmail.com>
Diffstat (limited to 'ot/sliced.py')
-rw-r--r--ot/sliced.py144
1 files changed, 144 insertions, 0 deletions
diff --git a/ot/sliced.py b/ot/sliced.py
new file mode 100644
index 0000000..4792576
--- /dev/null
+++ b/ot/sliced.py
@@ -0,0 +1,144 @@
+"""
+Sliced Wasserstein Distance.
+
+"""
+
+# Author: Adrien Corenflos <adrien.corenflos@aalto.fi>
+#
+# License: MIT License
+
+
+import numpy as np
+
+
+def get_random_projections(n_projections, d, seed=None):
+ r"""
+ Generates n_projections samples from the uniform on the unit sphere of dimension d-1: :math:`\mathcal{U}(\mathcal{S}^{d-1})`
+
+ Parameters
+ ----------
+ n_projections : int
+ number of samples requested
+ d : int
+ dimension of the space
+ seed: int or RandomState, optional
+ Seed used for numpy random number generator
+
+ Returns
+ -------
+ out: ndarray, shape (n_projections, d)
+ The uniform unit vectors on the sphere
+
+ Examples
+ --------
+ >>> n_projections = 100
+ >>> d = 5
+ >>> projs = get_random_projections(n_projections, d)
+ >>> np.allclose(np.sum(np.square(projs), 1), 1.) # doctest: +NORMALIZE_WHITESPACE
+ True
+
+ """
+
+ if not isinstance(seed, np.random.RandomState):
+ random_state = np.random.RandomState(seed)
+ else:
+ random_state = seed
+
+ projections = random_state.normal(0., 1., [n_projections, d])
+ norm = np.linalg.norm(projections, ord=2, axis=1, keepdims=True)
+ projections = projections / norm
+ return projections
+
+
+def sliced_wasserstein_distance(X_s, X_t, a=None, b=None, n_projections=50, seed=None, log=False):
+ r"""
+ Computes a Monte-Carlo approximation of the 2-Sliced Wasserstein distance
+
+ .. math::
+ \mathcal{SWD}_2(\mu, \nu) = \underset{\theta \sim \mathcal{U}(\mathbb{S}^{d-1})}{\mathbb{E}}[\mathcal{W}_2^2(\theta_\# \mu, \theta_\# \nu)]^{\frac{1}{2}}
+
+ where :
+
+ - :math:`\theta_\# \mu` stands for the pushforwars of the projection :math:`\mathbb{R}^d \ni X \mapsto \langle \theta, X \rangle`
+
+
+ Parameters
+ ----------
+ X_s : ndarray, shape (n_samples_a, dim)
+ samples in the source domain
+ X_t : ndarray, shape (n_samples_b, dim)
+ samples in the target domain
+ a : ndarray, shape (n_samples_a,), optional
+ samples weights in the source domain
+ b : ndarray, shape (n_samples_b,), optional
+ samples weights in the target domain
+ n_projections : int, optional
+ Number of projections used for the Monte-Carlo approximation
+ seed: int or RandomState or None, optional
+ Seed used for numpy random number generator
+ log: bool, optional
+ if True, sliced_wasserstein_distance returns the projections used and their associated EMD.
+
+ Returns
+ -------
+ cost: float
+ Sliced Wasserstein Cost
+ log : dict, optional
+ log dictionary return only if log==True in parameters
+
+ Examples
+ --------
+
+ >>> n_samples_a = 20
+ >>> reg = 0.1
+ >>> X = np.random.normal(0., 1., (n_samples_a, 5))
+ >>> sliced_wasserstein_distance(X, X, seed=0) # doctest: +NORMALIZE_WHITESPACE
+ 0.0
+
+ References
+ ----------
+
+ .. [31] Bonneel, Nicolas, et al. "Sliced and radon wasserstein barycenters of measures." Journal of Mathematical Imaging and Vision 51.1 (2015): 22-45
+ """
+ from .lp import emd2_1d
+
+ X_s = np.asanyarray(X_s)
+ X_t = np.asanyarray(X_t)
+
+ n = X_s.shape[0]
+ m = X_t.shape[0]
+
+ if X_s.shape[1] != X_t.shape[1]:
+ raise ValueError(
+ "X_s and X_t must have the same number of dimensions {} and {} respectively given".format(X_s.shape[1],
+ X_t.shape[1]))
+
+ if a is None:
+ a = np.full(n, 1 / n)
+ if b is None:
+ b = np.full(m, 1 / m)
+
+ d = X_s.shape[1]
+
+ projections = get_random_projections(n_projections, d, seed)
+
+ X_s_projections = np.dot(projections, X_s.T)
+ X_t_projections = np.dot(projections, X_t.T)
+
+ if log:
+ projected_emd = np.empty(n_projections)
+ else:
+ projected_emd = None
+
+ res = 0.
+
+ for i, (X_s_proj, X_t_proj) in enumerate(zip(X_s_projections, X_t_projections)):
+ emd = emd2_1d(X_s_proj, X_t_proj, a, b, log=False, dense=False)
+ if projected_emd is not None:
+ projected_emd[i] = emd
+ res += emd
+
+ res = (res / n_projections) ** 0.5
+ if log:
+ return res, {"projections": projections, "projected_emds": projected_emd}
+ return res