summaryrefslogtreecommitdiff
path: root/ot/stochastic.py
diff options
context:
space:
mode:
authorKilian Fatras <kilianfatras@dhcp-206-12-53-99.eduroam.wireless.ubc.ca>2018-06-15 18:53:54 -0700
committerKilian Fatras <kilianfatras@dhcp-206-12-53-99.eduroam.wireless.ubc.ca>2018-06-15 18:53:54 -0700
commitc8eda449b2c6b39e9d57d1b5b2c39e43f2925892 (patch)
tree19e241788b920c8c5c181ca6562553a2e3bd7468 /ot/stochastic.py
parent90efa5a8b189214d1aeb81920b2bb04ce0c261ca (diff)
add problems solved in doc
Diffstat (limited to 'ot/stochastic.py')
-rw-r--r--ot/stochastic.py415
1 files changed, 415 insertions, 0 deletions
diff --git a/ot/stochastic.py b/ot/stochastic.py
new file mode 100644
index 0000000..541f456
--- /dev/null
+++ b/ot/stochastic.py
@@ -0,0 +1,415 @@
+# Author: Kilian Fatras <kilian.fatras@gmail.com>
+#
+# License: MIT License
+
+import numpy as np
+
+
+def coordinate_gradient(b, M, reg, v, i):
+ '''
+ Compute the coordinate gradient update for regularized discrete
+ distributions for (i, :)
+
+ The function computes the gradient of the semi dual problem:
+ .. math::
+ \W_varepsilon(a, b) = \max_\v \sum_i (\sum_j v_j * b_j
+ - \reg log(\sum_j exp((v_j - M_{i,j})/reg) * b_j)) * a_i
+
+ where :
+ - M is the (ns,nt) metric cost matrix
+ - v is a dual variable in R^J
+ - reg is the regularization term
+ - a and b are source and target weights (sum to 1)
+
+ The algorithm used for solving the problem is the ASGD & SAG algorithms
+ as proposed in [18]_ [alg.1 & alg.2]
+
+
+ Parameters
+ ----------
+
+ b : np.ndarray(nt,),
+ target measure
+ M : np.ndarray(ns, nt),
+ cost matrix
+ reg : float nu,
+ Regularization term > 0
+ v : np.ndarray(nt,),
+ optimization vector
+ i : number int,
+ picked number i
+
+ Returns
+ -------
+
+ coordinate gradient : np.ndarray(nt,)
+
+ Examples
+ --------
+
+ >>> n_source = 7
+ >>> n_target = 4
+ >>> reg = 1
+ >>> numItermax = 300000
+ >>> lr = 1
+ >>> a = ot.utils.unif(n_source)
+ >>> b = ot.utils.unif(n_target)
+ >>> rng = np.random.RandomState(0)
+ >>> X_source = rng.randn(n_source, 2)
+ >>> Y_target = rng.randn(n_target, 2)
+ >>> M = ot.dist(X_source, Y_target)
+ >>> method = "ASGD"
+ >>> asgd_pi = stochastic.transportation_matrix_entropic(a, b, M, reg,
+ method, numItermax,
+ lr)
+ >>> print(asgd_pi)
+
+ References
+ ----------
+
+ [Genevay et al., 2016] :
+ Stochastic Optimization for Large-scale Optimal Transport,
+ Advances in Neural Information Processing Systems (2016),
+ arXiv preprint arxiv:1605.08527.
+
+ '''
+
+ r = M[i, :] - v
+ exp_v = np.exp(-r / reg) * b
+ khi = exp_v / (np.sum(exp_v))
+ return b - khi
+
+
+def sag_entropic_transport(a, b, M, reg, numItermax=10000, lr=0.1):
+ '''
+ Compute the SAG algorithm to solve the regularized discrete measures
+ optimal transport max problem
+
+ The function solves the following optimization problem:
+ .. math::
+ \gamma = arg\min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma)
+ s.t. \gamma 1 = a
+ \gamma^T 1= b
+ \gamma \geq 0
+ where :
+ - M is the (ns,nt) metric cost matrix
+ - :math:`\Omega` is the entropic regularization term
+ :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})`
+ - a and b are source and target weights (sum to 1)
+ The algorithm used for solving the problem is the SAG algorithm
+ as proposed in [18]_ [alg.1]
+
+
+ Parameters
+ ----------
+
+ a : np.ndarray(ns,),
+ source measure
+ b : np.ndarray(nt,),
+ target measure
+ M : np.ndarray(ns, nt),
+ cost matrix
+ reg : float number,
+ Regularization term > 0
+ numItermax : int number
+ number of iteration
+ lr : float number
+ learning rate
+
+ Returns
+ -------
+
+ v : np.ndarray(nt,)
+ dual variable
+
+ Examples
+ --------
+
+ >>> n_source = 7
+ >>> n_target = 4
+ >>> reg = 1
+ >>> numItermax = 300000
+ >>> lr = 1
+ >>> a = ot.utils.unif(n_source)
+ >>> b = ot.utils.unif(n_target)
+ >>> rng = np.random.RandomState(0)
+ >>> X_source = rng.randn(n_source, 2)
+ >>> Y_target = rng.randn(n_target, 2)
+ >>> M = ot.dist(X_source, Y_target)
+ >>> method = "SAG"
+ >>> sag_pi = stochastic.transportation_matrix_entropic(a, b, M, reg,
+ method, numItermax,
+ lr)
+ >>> print(asgd_pi)
+
+ References
+ ----------
+
+ [Genevay et al., 2016] :
+ Stochastic Optimization for Large-scale Optimal Transport,
+ Advances in Neural Information Processing Systems (2016),
+ arXiv preprint arxiv:1605.08527.
+ '''
+
+ n_source = np.shape(M)[0]
+ n_target = np.shape(M)[1]
+ v = np.zeros(n_target)
+ stored_gradient = np.zeros((n_source, n_target))
+ sum_stored_gradient = np.zeros(n_target)
+ for _ in range(numItermax):
+ i = np.random.randint(n_source)
+ cur_coord_grad = a[i] * coordinate_gradient(b, M, reg, v, i)
+ sum_stored_gradient += (cur_coord_grad - stored_gradient[i])
+ stored_gradient[i] = cur_coord_grad
+ v += lr * (1. / n_source) * sum_stored_gradient
+ return v
+
+
+def averaged_sgd_entropic_transport(b, M, reg, numItermax=300000, lr=1):
+ '''
+ Compute the ASGD algorithm to solve the regularized semi contibous measures
+ optimal transport max problem
+
+ The function solves the following optimization problem:
+ .. math::
+ \gamma = arg\min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma)
+ s.t. \gamma 1 = a
+ \gamma^T 1= b
+ \gamma \geq 0
+ where :
+ - M is the (ns,nt) metric cost matrix
+ - :math:`\Omega` is the entropic regularization term
+ :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})`
+ - a and b are source and target weights (sum to 1)
+ The algorithm used for solving the problem is the ASGD algorithm
+ as proposed in [18]_ [alg.2]
+
+
+ Parameters
+ ----------
+
+ b : np.ndarray(nt,),
+ target measure
+ M : np.ndarray(ns, nt),
+ cost matrix
+ reg : float number,
+ Regularization term > 0
+ numItermax : int number
+ number of iteration
+ lr : float number
+ learning rate
+
+
+ Returns
+ -------
+
+ ave_v : np.ndarray(nt,)
+ optimization vector
+
+ Examples
+ --------
+
+ >>> n_source = 7
+ >>> n_target = 4
+ >>> reg = 1
+ >>> numItermax = 300000
+ >>> lr = 1
+ >>> a = ot.utils.unif(n_source)
+ >>> b = ot.utils.unif(n_target)
+ >>> rng = np.random.RandomState(0)
+ >>> X_source = rng.randn(n_source, 2)
+ >>> Y_target = rng.randn(n_target, 2)
+ >>> M = ot.dist(X_source, Y_target)
+ >>> method = "ASGD"
+ >>> asgd_pi = stochastic.transportation_matrix_entropic(a, b, M, reg,
+ method, numItermax,
+ lr)
+ >>> print(asgd_pi)
+
+ References
+ ----------
+
+ [Genevay et al., 2016] :
+ Stochastic Optimization for Large-scale Optimal Transport,
+ Advances in Neural Information Processing Systems (2016),
+ arXiv preprint arxiv:1605.08527.
+ '''
+
+ n_source = np.shape(M)[0]
+ n_target = np.shape(M)[1]
+ cur_v = np.zeros(n_target)
+ ave_v = np.zeros(n_target)
+ for cur_iter in range(numItermax):
+ k = cur_iter + 1
+ i = np.random.randint(n_source)
+ cur_coord_grad = coordinate_gradient(b, M, reg, cur_v, i)
+ cur_v += (lr / np.sqrt(k)) * cur_coord_grad
+ ave_v = (1. / k) * cur_v + (1 - 1. / k) * ave_v
+ return ave_v
+
+
+def c_transform_entropic(b, M, reg, v):
+ '''
+ The goal is to recover u from the c-transform.
+
+ The function computes the c_transform of a dual variable from the other
+ dual variable:
+ .. math::
+ u = v^{c,reg} = -reg \sum_j exp((v - M)/reg) b_j
+
+ where :
+ - M is the (ns,nt) metric cost matrix
+ - u, v are dual variables in R^IxR^J
+ - reg is the regularization term
+
+ It is used to recover an optimal u from optimal v solving the semi dual
+ problem, see Proposition 2.1 of [18]_
+
+
+ Parameters
+ ----------
+
+ b : np.ndarray(nt,)
+ target measure
+ M : np.ndarray(ns, nt)
+ cost matrix
+ reg : float
+ regularization term > 0
+ v : np.ndarray(nt,)
+ dual variable
+
+ Returns
+ -------
+
+ u : np.ndarray(ns,)
+
+ Examples
+ --------
+
+ >>> n_source = 7
+ >>> n_target = 4
+ >>> reg = 1
+ >>> numItermax = 300000
+ >>> lr = 1
+ >>> a = ot.utils.unif(n_source)
+ >>> b = ot.utils.unif(n_target)
+ >>> rng = np.random.RandomState(0)
+ >>> X_source = rng.randn(n_source, 2)
+ >>> Y_target = rng.randn(n_target, 2)
+ >>> M = ot.dist(X_source, Y_target)
+ >>> method = "ASGD"
+ >>> asgd_pi = stochastic.transportation_matrix_entropic(a, b, M, reg,
+ method, numItermax,
+ lr)
+ >>> print(asgd_pi)
+
+ References
+ ----------
+
+ [Genevay et al., 2016] :
+ Stochastic Optimization for Large-scale Optimal Transport,
+ Advances in Neural Information Processing Systems (2016),
+ arXiv preprint arxiv:1605.08527.
+ '''
+
+ n_source = np.shape(M)[0]
+ n_target = np.shape(M)[1]
+ u = np.zeros(n_source)
+ for i in range(n_source):
+ r = M[i, :] - v
+ exp_v = np.exp(-r / reg) * b
+ u[i] = - reg * np.log(np.sum(exp_v))
+ return u
+
+
+def transportation_matrix_entropic(a, b, M, reg, method, numItermax=10000,
+ lr=0.1):
+ '''
+ Compute the transportation matrix to solve the regularized discrete
+ measures optimal transport max problem
+
+ The function solves the following optimization problem:
+ .. math::
+ \gamma = arg\min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma)
+ s.t. \gamma 1 = a
+ \gamma^T 1= b
+ \gamma \geq 0
+ where :
+ - M is the (ns,nt) metric cost matrix
+ - :math:`\Omega` is the entropic regularization term
+ :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})`
+ - a and b are source and target weights (sum to 1)
+ The algorithm used for solving the problem is the SAG or ASGD algorithms
+ as proposed in [18]_
+
+
+ Parameters
+ ----------
+
+ a : np.ndarray(ns,),
+ source measure
+ b : np.ndarray(nt,),
+ target measure
+ M : np.ndarray(ns, nt),
+ cost matrix
+ reg : float number,
+ Regularization term > 0
+ methode : str,
+ used method (SAG or ASGD)
+ numItermax : int number
+ number of iteration
+ lr : float number
+ learning rate
+ n_source : int number
+ size of the source measure
+ n_target : int number
+ size of the target measure
+
+ Returns
+ -------
+
+ pi : np.ndarray(ns, nt)
+ transportation matrix
+
+ Examples
+ --------
+
+ >>> n_source = 7
+ >>> n_target = 4
+ >>> reg = 1
+ >>> numItermax = 300000
+ >>> lr = 1
+ >>> a = ot.utils.unif(n_source)
+ >>> b = ot.utils.unif(n_target)
+ >>> rng = np.random.RandomState(0)
+ >>> X_source = rng.randn(n_source, 2)
+ >>> Y_target = rng.randn(n_target, 2)
+ >>> M = ot.dist(X_source, Y_target)
+ >>> method = "ASGD"
+ >>> asgd_pi = stochastic.transportation_matrix_entropic(a, b, M, reg,
+ method, numItermax,
+ lr)
+ >>> print(asgd_pi)
+
+ References
+ ----------
+
+ [Genevay et al., 2016] :
+ Stochastic Optimization for Large-scale Optimal Transport,
+ Advances in Neural Information Processing Systems (2016),
+ arXiv preprint arxiv:1605.08527.
+ '''
+ n_source = 7
+ n_target = 4
+ if method.lower() == "sag":
+ opt_v = sag_entropic_transport(a, b, M, reg, numItermax, lr)
+ elif method.lower() == "asgd":
+ opt_v = averaged_sgd_entropic_transport(b, M, reg, numItermax, lr)
+ else:
+ print("Please, select your method between SAG and ASGD")
+ return None
+
+ opt_u = c_transform_entropic(b, M, reg, opt_v)
+ pi = (np.exp((opt_u[:, None] + opt_v[None, :] - M[:, :]) / reg)
+ * a[:, None] * b[None, :])
+ return pi