summaryrefslogtreecommitdiff
path: root/ot
diff options
context:
space:
mode:
authorTianlin Liu <tliu@jacobs-alumni.de>2023-04-25 12:14:29 +0200
committerGitHub <noreply@github.com>2023-04-25 12:14:29 +0200
commit42a62c123776e04ee805aefb9afd6d98abdcf192 (patch)
treed439a1478c2f148c89678adc07736834b41255d4 /ot
parent03ca4ef659a037e400975e3b2116b637a2d94265 (diff)
[FEAT] add the sparsity-constrained optimal transport funtionality and example (#459)
* add sparsity-constrained ot funtionality and example * correct typos; add projection_sparse_simplex * add gradcheck; merge ot.sparse into ot.smooth. * reuse existing ot.smooth functions with a new 'sparsity_constrained' reg_type * address pep8 error * add backends for * update releases --------- Co-authored-by: RĂ©mi Flamary <remi.flamary@gmail.com>
Diffstat (limited to 'ot')
-rw-r--r--ot/smooth.py80
-rw-r--r--ot/utils.py81
2 files changed, 155 insertions, 6 deletions
diff --git a/ot/smooth.py b/ot/smooth.py
index 8e0ef38..331cfc0 100644
--- a/ot/smooth.py
+++ b/ot/smooth.py
@@ -24,9 +24,10 @@
# Author: Mathieu Blondel
# Remi Flamary <remi.flamary@unice.fr>
+# Tianlin Liu <t.liu@unibas.ch>
"""
-Smooth and Sparse Optimal Transport solvers (KL an L2 reg.)
+Smooth and Sparse (KL an L2 reg.) and sparsity-constrained OT solvers.
Implementation of :
Smooth and Sparse Optimal Transport.
@@ -34,17 +35,31 @@ Mathieu Blondel, Vivien Seguy, Antoine Rolet.
In Proc. of AISTATS 2018.
https://arxiv.org/abs/1710.06276
+(Original code from https://github.com/mblondel/smooth-ot/)
+
+Sparsity-Constrained Optimal Transport.
+Liu, T., Puigcerver, J., & Blondel, M. (2023).
+Sparsity-constrained optimal transport.
+Proceedings of the Eleventh International Conference on
+Learning Representations (ICLR).
+https://arxiv.org/abs/2209.15466
+
+
[17] Blondel, M., Seguy, V., & Rolet, A. (2018). Smooth and Sparse Optimal
Transport. Proceedings of the Twenty-First International Conference on
Artificial Intelligence and Statistics (AISTATS).
-Original code from https://github.com/mblondel/smooth-ot/
+[50] Liu, T., Puigcerver, J., & Blondel, M. (2023).
+Sparsity-constrained optimal transport.
+Proceedings of the Eleventh International Conference on
+Learning Representations (ICLR).
"""
import numpy as np
from scipy.optimize import minimize
from .backend import get_backend
+import ot
def projection_simplex(V, z=1, axis=None):
@@ -209,6 +224,39 @@ class SquaredL2(Regularization):
return 0.5 * self.gamma * np.sum(T ** 2)
+class SparsityConstrained(Regularization):
+ """ Squared L2 regularization with sparsity constraints """
+
+ def __init__(self, max_nz, gamma=1.0):
+ self.max_nz = max_nz
+ self.gamma = gamma
+
+ def delta_Omega(self, X):
+ # For each column of X, find entries that are not among the top max_nz.
+ non_top_indices = np.argpartition(
+ -X, self.max_nz, axis=0)[self.max_nz:]
+ # Set these entries to -inf.
+ if X.ndim == 1:
+ X[non_top_indices] = 0.0
+ else:
+ X[non_top_indices, np.arange(X.shape[1])] = 0.0
+ max_X = np.maximum(X, 0)
+ val = np.sum(max_X ** 2, axis=0) / (2 * self.gamma)
+ G = max_X / self.gamma
+ return val, G
+
+ def max_Omega(self, X, b):
+ # Project the scaled X onto the simplex with sparsity constraint.
+ G = ot.utils.projection_sparse_simplex(
+ X / (b * self.gamma), self.max_nz, axis=0)
+ val = np.sum(X * G, axis=0)
+ val -= 0.5 * self.gamma * b * np.sum(G * G, axis=0)
+ return val, G
+
+ def Omega(self, T):
+ return 0.5 * self.gamma * np.sum(T ** 2)
+
+
def dual_obj_grad(alpha, beta, a, b, C, regul):
r"""
Compute objective value and gradients of dual objective.
@@ -435,8 +483,9 @@ def get_plan_from_semi_dual(alpha, b, C, regul):
return regul.max_Omega(X, b)[1] * b
-def smooth_ot_dual(a, b, M, reg, reg_type='l2', method="L-BFGS-B", stopThr=1e-9,
- numItermax=500, verbose=False, log=False):
+def smooth_ot_dual(a, b, M, reg, reg_type='l2',
+ method="L-BFGS-B", stopThr=1e-9,
+ numItermax=500, verbose=False, log=False, max_nz=None):
r"""
Solve the regularized OT problem in the dual and return the OT matrix
@@ -477,6 +526,9 @@ def smooth_ot_dual(a, b, M, reg, reg_type='l2', method="L-BFGS-B", stopThr=1e-9,
:ref:`[2] <references-smooth-ot-dual>`)
- 'l2' : Squared Euclidean regularization
+ - 'sparsity_constrained' : Sparsity-constrained regularization [50]
+ max_nz : int or None, optional. Used only in the case of reg_type = 'sparsity_constrained' to specify the maximum number of nonzeros per column of the optimal plan;
+ not used for other regularization types.
method : str
Solver to use for scipy.optimize.minimize
numItermax : int, optional
@@ -504,6 +556,8 @@ def smooth_ot_dual(a, b, M, reg, reg_type='l2', method="L-BFGS-B", stopThr=1e-9,
.. [17] Blondel, M., Seguy, V., & Rolet, A. (2018). Smooth and Sparse Optimal Transport. Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics (AISTATS).
+ .. [50] Liu, T., Puigcerver, J., & Blondel, M. (2023). Sparsity-constrained optimal transport. Proceedings of the Eleventh International Conference on Learning Representations (ICLR).
+
See Also
--------
ot.lp.emd : Unregularized OT
@@ -518,6 +572,11 @@ def smooth_ot_dual(a, b, M, reg, reg_type='l2', method="L-BFGS-B", stopThr=1e-9,
regul = SquaredL2(gamma=reg)
elif reg_type.lower() in ['entropic', 'negentropy', 'kl']:
regul = NegEntropy(gamma=reg)
+ elif reg_type.lower() in ['sparsity_constrained', 'sparsity-constrained']:
+ if not isinstance(max_nz, int):
+ raise ValueError(
+ f'max_nz {max_nz} must be an integer')
+ regul = SparsityConstrained(gamma=reg, max_nz=max_nz)
else:
raise NotImplementedError('Unknown regularization')
@@ -539,7 +598,8 @@ def smooth_ot_dual(a, b, M, reg, reg_type='l2', method="L-BFGS-B", stopThr=1e-9,
return G
-def smooth_ot_semi_dual(a, b, M, reg, reg_type='l2', method="L-BFGS-B", stopThr=1e-9,
+def smooth_ot_semi_dual(a, b, M, reg, reg_type='l2', max_nz=None,
+ method="L-BFGS-B", stopThr=1e-9,
numItermax=500, verbose=False, log=False):
r"""
Solve the regularized OT problem in the semi-dual and return the OT matrix
@@ -583,6 +643,9 @@ def smooth_ot_semi_dual(a, b, M, reg, reg_type='l2', method="L-BFGS-B", stopThr=
:ref:`[2] <references-smooth-ot-semi-dual>`)
- 'l2' : Squared Euclidean regularization
+ - 'sparsity_constrained' : Sparsity-constrained regularization [50]
+ max_nz : int or None, optional. Used only in the case of reg_type = 'sparsity_constrained' to specify the maximum number of nonzeros per column of the optimal plan;
+ not used for other regularization types.
method : str
Solver to use for scipy.optimize.minimize
numItermax : int, optional
@@ -610,6 +673,8 @@ def smooth_ot_semi_dual(a, b, M, reg, reg_type='l2', method="L-BFGS-B", stopThr=
.. [17] Blondel, M., Seguy, V., & Rolet, A. (2018). Smooth and Sparse Optimal Transport. Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics (AISTATS).
+ .. [50] Liu, T., Puigcerver, J., & Blondel, M. (2023). Sparsity-constrained optimal transport. Proceedings of the Eleventh International Conference on Learning Representations (ICLR).
+
See Also
--------
ot.lp.emd : Unregularized OT
@@ -621,6 +686,11 @@ def smooth_ot_semi_dual(a, b, M, reg, reg_type='l2', method="L-BFGS-B", stopThr=
regul = SquaredL2(gamma=reg)
elif reg_type.lower() in ['entropic', 'negentropy', 'kl']:
regul = NegEntropy(gamma=reg)
+ elif reg_type.lower() in ['sparsity_constrained', 'sparsity-constrained']:
+ if not isinstance(max_nz, int):
+ raise ValueError(
+ f'max_nz {max_nz} must be an integer')
+ regul = SparsityConstrained(gamma=reg, max_nz=max_nz)
else:
raise NotImplementedError('Unknown regularization')
diff --git a/ot/utils.py b/ot/utils.py
index 3423a7e..3343028 100644
--- a/ot/utils.py
+++ b/ot/utils.py
@@ -15,7 +15,7 @@ from scipy.spatial.distance import cdist
import sys
import warnings
from inspect import signature
-from .backend import get_backend, Backend, NumpyBackend
+from .backend import get_backend, Backend, NumpyBackend, JaxBackend
__time_tic_toc = time.time()
@@ -117,6 +117,85 @@ def proj_simplex(v, z=1):
return w
+def projection_sparse_simplex(V, max_nz, z=1, axis=None, nx=None):
+ r"""Projection of :math:`\mathbf{V}` onto the simplex with cardinality constraint (maximum number of non-zero elements) and then scaled by `z`.
+
+ .. math::
+ P\left(\mathbf{V}, max_nz, z\right) = \mathop{\arg \min}_{\substack{\mathbf{y} >= 0 \\ \sum_i \mathbf{y}_i = z} \\ ||p||_0 \le \text{max_nz}} \quad \|\mathbf{y} - \mathbf{V}\|^2
+
+ Parameters
+ ----------
+ V: 1-dim or 2-dim ndarray
+ z: float or array
+ If array, len(z) must be compatible with :math:`\mathbf{V}`
+ axis: None or int
+ - axis=None: project :math:`\mathbf{V}` by :math:`P(\mathbf{V}.\mathrm{ravel}(), max_nz, z)`
+ - axis=1: project each :math:`\mathbf{V}_i` by :math:`P(\mathbf{V}_i, max_nz, z_i)`
+ - axis=0: project each :math:`\mathbf{V}_{:, j}` by :math:`P(\mathbf{V}_{:, j}, max_nz, z_j)`
+
+ Returns
+ -------
+ projection: ndarray, shape :math:`\mathbf{V}`.shape
+
+ References:
+ Sparse projections onto the simplex
+ Anastasios Kyrillidis, Stephen Becker, Volkan Cevher and, Christoph Koch
+ ICML 2013
+ https://arxiv.org/abs/1206.1529
+ """
+ if nx is None:
+ nx = get_backend(V)
+ if V.ndim == 1:
+ return projection_sparse_simplex(
+ # V[nx.newaxis, :], max_nz, z, axis=1).ravel()
+ V[None, :], max_nz, z, axis=1).ravel()
+
+ if V.ndim > 2:
+ raise ValueError('V.ndim must be <= 2')
+
+ if axis == 1:
+ # For each row of V, find top max_nz values; arrange the
+ # corresponding column indices such that their values are
+ # in a descending order.
+ max_nz_indices = nx.argsort(V, axis=1)[:, -max_nz:]
+ max_nz_indices = nx.flip(max_nz_indices, axis=1)
+
+ row_indices = nx.arange(V.shape[0])
+ row_indices = row_indices.reshape(-1, 1)
+ print(row_indices.shape)
+ # Extract the top max_nz values for each row
+ # and then project to simplex.
+ U = V[row_indices, max_nz_indices]
+ z = nx.ones(len(U)) * z
+ cssv = nx.cumsum(U, axis=1) - z[:, None]
+ ind = nx.arange(max_nz) + 1
+ cond = U - cssv / ind > 0
+ # rho = nx.count_nonzero(cond, axis=1)
+ rho = nx.sum(cond, axis=1)
+ theta = cssv[nx.arange(len(U)), rho - 1] / rho
+ nz_projection = nx.maximum(U - theta[:, None], 0)
+
+ # Put the projection of max_nz_values to their original column indices
+ # while keeping other values zero.
+ sparse_projection = nx.zeros(V.shape, type_as=nz_projection)
+
+ if isinstance(nx, JaxBackend):
+ # in Jax, we need to use the `at` property of `jax.numpy.ndarray`
+ # to do in-place array modificatons.
+ sparse_projection = sparse_projection.at[
+ row_indices, max_nz_indices].set(nz_projection)
+ else:
+ sparse_projection[row_indices, max_nz_indices] = nz_projection
+ return sparse_projection
+
+ elif axis == 0:
+ return projection_sparse_simplex(V.T, max_nz, z, axis=1).T
+
+ else:
+ V = V.ravel().reshape(1, -1)
+ return projection_sparse_simplex(V, max_nz, z, axis=1).ravel()
+
+
def unif(n, type_as=None):
r"""
Return a uniform histogram of length `n` (simplex).