summaryrefslogtreecommitdiff
path: root/test
diff options
context:
space:
mode:
authorAntoine Rolet <antoine.rolet@gmail.com>2017-09-09 12:40:09 +0900
committerAntoine Rolet <antoine.rolet@gmail.com>2017-09-09 12:40:09 +0900
commit619bb41a18a542ce768fd4ce3eb9240e9ad6650e (patch)
treecc60cccc304a8d9fcad31d42aab40513b1dce48d /test
parente58cd780ccf87736265e4e1a39afa3a167325ccc (diff)
parent62dcfbfb78a2be24379cd5cdb4aec70d8c4befaa (diff)
Merge remote-tracking branch 'upstream/master' into ot_dual_variables
Diffstat (limited to 'test')
-rw-r--r--test/test_da.py326
1 files changed, 182 insertions, 144 deletions
diff --git a/test/test_da.py b/test/test_da.py
index 104a798..593dc53 100644
--- a/test/test_da.py
+++ b/test/test_da.py
@@ -22,60 +22,68 @@ def test_sinkhorn_lpl1_transport_class():
Xs, ys = get_data_classif('3gauss', ns)
Xt, yt = get_data_classif('3gauss2', nt)
- clf = ot.da.SinkhornLpl1Transport()
+ otda = ot.da.SinkhornLpl1Transport()
# test its computed
- clf.fit(Xs=Xs, ys=ys, Xt=Xt)
- assert hasattr(clf, "cost_")
- assert hasattr(clf, "coupling_")
+ otda.fit(Xs=Xs, ys=ys, Xt=Xt)
+ assert hasattr(otda, "cost_")
+ assert hasattr(otda, "coupling_")
# test dimensions of coupling
- assert_equal(clf.cost_.shape, ((Xs.shape[0], Xt.shape[0])))
- assert_equal(clf.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))
+ assert_equal(otda.cost_.shape, ((Xs.shape[0], Xt.shape[0])))
+ assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))
# test margin constraints
mu_s = unif(ns)
mu_t = unif(nt)
- assert_allclose(np.sum(clf.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
- assert_allclose(np.sum(clf.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)
+ assert_allclose(
+ np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
+ assert_allclose(
+ np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)
# test transform
- transp_Xs = clf.transform(Xs=Xs)
+ transp_Xs = otda.transform(Xs=Xs)
assert_equal(transp_Xs.shape, Xs.shape)
Xs_new, _ = get_data_classif('3gauss', ns + 1)
- transp_Xs_new = clf.transform(Xs_new)
+ transp_Xs_new = otda.transform(Xs_new)
# check that the oos method is working
assert_equal(transp_Xs_new.shape, Xs_new.shape)
# test inverse transform
- transp_Xt = clf.inverse_transform(Xt=Xt)
+ transp_Xt = otda.inverse_transform(Xt=Xt)
assert_equal(transp_Xt.shape, Xt.shape)
Xt_new, _ = get_data_classif('3gauss2', nt + 1)
- transp_Xt_new = clf.inverse_transform(Xt=Xt_new)
+ transp_Xt_new = otda.inverse_transform(Xt=Xt_new)
# check that the oos method is working
assert_equal(transp_Xt_new.shape, Xt_new.shape)
# test fit_transform
- transp_Xs = clf.fit_transform(Xs=Xs, ys=ys, Xt=Xt)
+ transp_Xs = otda.fit_transform(Xs=Xs, ys=ys, Xt=Xt)
assert_equal(transp_Xs.shape, Xs.shape)
- # test semi supervised mode
- clf = ot.da.SinkhornLpl1Transport()
- clf.fit(Xs=Xs, ys=ys, Xt=Xt)
- n_unsup = np.sum(clf.cost_)
+ # test unsupervised vs semi-supervised mode
+ otda_unsup = ot.da.SinkhornLpl1Transport()
+ otda_unsup.fit(Xs=Xs, ys=ys, Xt=Xt)
+ n_unsup = np.sum(otda_unsup.cost_)
- # test semi supervised mode
- clf = ot.da.SinkhornLpl1Transport()
- clf.fit(Xs=Xs, ys=ys, Xt=Xt, yt=yt)
- assert_equal(clf.cost_.shape, ((Xs.shape[0], Xt.shape[0])))
- n_semisup = np.sum(clf.cost_)
+ otda_semi = ot.da.SinkhornLpl1Transport()
+ otda_semi.fit(Xs=Xs, ys=ys, Xt=Xt, yt=yt)
+ assert_equal(otda_semi.cost_.shape, ((Xs.shape[0], Xt.shape[0])))
+ n_semisup = np.sum(otda_semi.cost_)
+ # check that the cost matrix norms are indeed different
assert n_unsup != n_semisup, "semisupervised mode not working"
+ # check that the coupling forbids mass transport between labeled source
+ # and labeled target samples
+ mass_semi = np.sum(
+ otda_semi.coupling_[otda_semi.cost_ == otda_semi.limit_max])
+ assert mass_semi == 0, "semisupervised mode not working"
+
def test_sinkhorn_l1l2_transport_class():
"""test_sinkhorn_transport
@@ -87,65 +95,75 @@ def test_sinkhorn_l1l2_transport_class():
Xs, ys = get_data_classif('3gauss', ns)
Xt, yt = get_data_classif('3gauss2', nt)
- clf = ot.da.SinkhornL1l2Transport()
+ otda = ot.da.SinkhornL1l2Transport()
# test its computed
- clf.fit(Xs=Xs, ys=ys, Xt=Xt)
- assert hasattr(clf, "cost_")
- assert hasattr(clf, "coupling_")
- assert hasattr(clf, "log_")
+ otda.fit(Xs=Xs, ys=ys, Xt=Xt)
+ assert hasattr(otda, "cost_")
+ assert hasattr(otda, "coupling_")
+ assert hasattr(otda, "log_")
# test dimensions of coupling
- assert_equal(clf.cost_.shape, ((Xs.shape[0], Xt.shape[0])))
- assert_equal(clf.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))
+ assert_equal(otda.cost_.shape, ((Xs.shape[0], Xt.shape[0])))
+ assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))
# test margin constraints
mu_s = unif(ns)
mu_t = unif(nt)
- assert_allclose(np.sum(clf.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
- assert_allclose(np.sum(clf.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)
+ assert_allclose(
+ np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
+ assert_allclose(
+ np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)
# test transform
- transp_Xs = clf.transform(Xs=Xs)
+ transp_Xs = otda.transform(Xs=Xs)
assert_equal(transp_Xs.shape, Xs.shape)
Xs_new, _ = get_data_classif('3gauss', ns + 1)
- transp_Xs_new = clf.transform(Xs_new)
+ transp_Xs_new = otda.transform(Xs_new)
# check that the oos method is working
assert_equal(transp_Xs_new.shape, Xs_new.shape)
# test inverse transform
- transp_Xt = clf.inverse_transform(Xt=Xt)
+ transp_Xt = otda.inverse_transform(Xt=Xt)
assert_equal(transp_Xt.shape, Xt.shape)
Xt_new, _ = get_data_classif('3gauss2', nt + 1)
- transp_Xt_new = clf.inverse_transform(Xt=Xt_new)
+ transp_Xt_new = otda.inverse_transform(Xt=Xt_new)
# check that the oos method is working
assert_equal(transp_Xt_new.shape, Xt_new.shape)
# test fit_transform
- transp_Xs = clf.fit_transform(Xs=Xs, ys=ys, Xt=Xt)
+ transp_Xs = otda.fit_transform(Xs=Xs, ys=ys, Xt=Xt)
assert_equal(transp_Xs.shape, Xs.shape)
- # test semi supervised mode
- clf = ot.da.SinkhornL1l2Transport()
- clf.fit(Xs=Xs, ys=ys, Xt=Xt)
- n_unsup = np.sum(clf.cost_)
+ # test unsupervised vs semi-supervised mode
+ otda_unsup = ot.da.SinkhornL1l2Transport()
+ otda_unsup.fit(Xs=Xs, ys=ys, Xt=Xt)
+ n_unsup = np.sum(otda_unsup.cost_)
- # test semi supervised mode
- clf = ot.da.SinkhornL1l2Transport()
- clf.fit(Xs=Xs, ys=ys, Xt=Xt, yt=yt)
- assert_equal(clf.cost_.shape, ((Xs.shape[0], Xt.shape[0])))
- n_semisup = np.sum(clf.cost_)
+ otda_semi = ot.da.SinkhornL1l2Transport()
+ otda_semi.fit(Xs=Xs, ys=ys, Xt=Xt, yt=yt)
+ assert_equal(otda_semi.cost_.shape, ((Xs.shape[0], Xt.shape[0])))
+ n_semisup = np.sum(otda_semi.cost_)
+ # check that the cost matrix norms are indeed different
assert n_unsup != n_semisup, "semisupervised mode not working"
+ # check that the coupling forbids mass transport between labeled source
+ # and labeled target samples
+ mass_semi = np.sum(
+ otda_semi.coupling_[otda_semi.cost_ == otda_semi.limit_max])
+ mass_semi = otda_semi.coupling_[otda_semi.cost_ == otda_semi.limit_max]
+ assert_allclose(mass_semi, np.zeros_like(mass_semi),
+ rtol=1e-9, atol=1e-9)
+
# check everything runs well with log=True
- clf = ot.da.SinkhornL1l2Transport(log=True)
- clf.fit(Xs=Xs, ys=ys, Xt=Xt)
- assert len(clf.log_.keys()) != 0
+ otda = ot.da.SinkhornL1l2Transport(log=True)
+ otda.fit(Xs=Xs, ys=ys, Xt=Xt)
+ assert len(otda.log_.keys()) != 0
def test_sinkhorn_transport_class():
@@ -158,65 +176,73 @@ def test_sinkhorn_transport_class():
Xs, ys = get_data_classif('3gauss', ns)
Xt, yt = get_data_classif('3gauss2', nt)
- clf = ot.da.SinkhornTransport()
+ otda = ot.da.SinkhornTransport()
# test its computed
- clf.fit(Xs=Xs, Xt=Xt)
- assert hasattr(clf, "cost_")
- assert hasattr(clf, "coupling_")
- assert hasattr(clf, "log_")
+ otda.fit(Xs=Xs, Xt=Xt)
+ assert hasattr(otda, "cost_")
+ assert hasattr(otda, "coupling_")
+ assert hasattr(otda, "log_")
# test dimensions of coupling
- assert_equal(clf.cost_.shape, ((Xs.shape[0], Xt.shape[0])))
- assert_equal(clf.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))
+ assert_equal(otda.cost_.shape, ((Xs.shape[0], Xt.shape[0])))
+ assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))
# test margin constraints
mu_s = unif(ns)
mu_t = unif(nt)
- assert_allclose(np.sum(clf.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
- assert_allclose(np.sum(clf.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)
+ assert_allclose(
+ np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
+ assert_allclose(
+ np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)
# test transform
- transp_Xs = clf.transform(Xs=Xs)
+ transp_Xs = otda.transform(Xs=Xs)
assert_equal(transp_Xs.shape, Xs.shape)
Xs_new, _ = get_data_classif('3gauss', ns + 1)
- transp_Xs_new = clf.transform(Xs_new)
+ transp_Xs_new = otda.transform(Xs_new)
# check that the oos method is working
assert_equal(transp_Xs_new.shape, Xs_new.shape)
# test inverse transform
- transp_Xt = clf.inverse_transform(Xt=Xt)
+ transp_Xt = otda.inverse_transform(Xt=Xt)
assert_equal(transp_Xt.shape, Xt.shape)
Xt_new, _ = get_data_classif('3gauss2', nt + 1)
- transp_Xt_new = clf.inverse_transform(Xt=Xt_new)
+ transp_Xt_new = otda.inverse_transform(Xt=Xt_new)
# check that the oos method is working
assert_equal(transp_Xt_new.shape, Xt_new.shape)
# test fit_transform
- transp_Xs = clf.fit_transform(Xs=Xs, Xt=Xt)
+ transp_Xs = otda.fit_transform(Xs=Xs, Xt=Xt)
assert_equal(transp_Xs.shape, Xs.shape)
- # test semi supervised mode
- clf = ot.da.SinkhornTransport()
- clf.fit(Xs=Xs, Xt=Xt)
- n_unsup = np.sum(clf.cost_)
+ # test unsupervised vs semi-supervised mode
+ otda_unsup = ot.da.SinkhornTransport()
+ otda_unsup.fit(Xs=Xs, Xt=Xt)
+ n_unsup = np.sum(otda_unsup.cost_)
- # test semi supervised mode
- clf = ot.da.SinkhornTransport()
- clf.fit(Xs=Xs, ys=ys, Xt=Xt, yt=yt)
- assert_equal(clf.cost_.shape, ((Xs.shape[0], Xt.shape[0])))
- n_semisup = np.sum(clf.cost_)
+ otda_semi = ot.da.SinkhornTransport()
+ otda_semi.fit(Xs=Xs, ys=ys, Xt=Xt, yt=yt)
+ assert_equal(otda_semi.cost_.shape, ((Xs.shape[0], Xt.shape[0])))
+ n_semisup = np.sum(otda_semi.cost_)
+ # check that the cost matrix norms are indeed different
assert n_unsup != n_semisup, "semisupervised mode not working"
+ # check that the coupling forbids mass transport between labeled source
+ # and labeled target samples
+ mass_semi = np.sum(
+ otda_semi.coupling_[otda_semi.cost_ == otda_semi.limit_max])
+ assert mass_semi == 0, "semisupervised mode not working"
+
# check everything runs well with log=True
- clf = ot.da.SinkhornTransport(log=True)
- clf.fit(Xs=Xs, ys=ys, Xt=Xt)
- assert len(clf.log_.keys()) != 0
+ otda = ot.da.SinkhornTransport(log=True)
+ otda.fit(Xs=Xs, ys=ys, Xt=Xt)
+ assert len(otda.log_.keys()) != 0
def test_emd_transport_class():
@@ -229,60 +255,72 @@ def test_emd_transport_class():
Xs, ys = get_data_classif('3gauss', ns)
Xt, yt = get_data_classif('3gauss2', nt)
- clf = ot.da.EMDTransport()
+ otda = ot.da.EMDTransport()
# test its computed
- clf.fit(Xs=Xs, Xt=Xt)
- assert hasattr(clf, "cost_")
- assert hasattr(clf, "coupling_")
+ otda.fit(Xs=Xs, Xt=Xt)
+ assert hasattr(otda, "cost_")
+ assert hasattr(otda, "coupling_")
# test dimensions of coupling
- assert_equal(clf.cost_.shape, ((Xs.shape[0], Xt.shape[0])))
- assert_equal(clf.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))
+ assert_equal(otda.cost_.shape, ((Xs.shape[0], Xt.shape[0])))
+ assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))
# test margin constraints
mu_s = unif(ns)
mu_t = unif(nt)
- assert_allclose(np.sum(clf.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
- assert_allclose(np.sum(clf.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)
+ assert_allclose(
+ np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
+ assert_allclose(
+ np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)
# test transform
- transp_Xs = clf.transform(Xs=Xs)
+ transp_Xs = otda.transform(Xs=Xs)
assert_equal(transp_Xs.shape, Xs.shape)
Xs_new, _ = get_data_classif('3gauss', ns + 1)
- transp_Xs_new = clf.transform(Xs_new)
+ transp_Xs_new = otda.transform(Xs_new)
# check that the oos method is working
assert_equal(transp_Xs_new.shape, Xs_new.shape)
# test inverse transform
- transp_Xt = clf.inverse_transform(Xt=Xt)
+ transp_Xt = otda.inverse_transform(Xt=Xt)
assert_equal(transp_Xt.shape, Xt.shape)
Xt_new, _ = get_data_classif('3gauss2', nt + 1)
- transp_Xt_new = clf.inverse_transform(Xt=Xt_new)
+ transp_Xt_new = otda.inverse_transform(Xt=Xt_new)
# check that the oos method is working
assert_equal(transp_Xt_new.shape, Xt_new.shape)
# test fit_transform
- transp_Xs = clf.fit_transform(Xs=Xs, Xt=Xt)
+ transp_Xs = otda.fit_transform(Xs=Xs, Xt=Xt)
assert_equal(transp_Xs.shape, Xs.shape)
- # test semi supervised mode
- clf = ot.da.EMDTransport()
- clf.fit(Xs=Xs, Xt=Xt)
- n_unsup = np.sum(clf.cost_)
+ # test unsupervised vs semi-supervised mode
+ otda_unsup = ot.da.EMDTransport()
+ otda_unsup.fit(Xs=Xs, ys=ys, Xt=Xt)
+ n_unsup = np.sum(otda_unsup.cost_)
- # test semi supervised mode
- clf = ot.da.EMDTransport()
- clf.fit(Xs=Xs, ys=ys, Xt=Xt, yt=yt)
- assert_equal(clf.cost_.shape, ((Xs.shape[0], Xt.shape[0])))
- n_semisup = np.sum(clf.cost_)
+ otda_semi = ot.da.EMDTransport()
+ otda_semi.fit(Xs=Xs, ys=ys, Xt=Xt, yt=yt)
+ assert_equal(otda_semi.cost_.shape, ((Xs.shape[0], Xt.shape[0])))
+ n_semisup = np.sum(otda_semi.cost_)
+ # check that the cost matrix norms are indeed different
assert n_unsup != n_semisup, "semisupervised mode not working"
+ # check that the coupling forbids mass transport between labeled source
+ # and labeled target samples
+ mass_semi = np.sum(
+ otda_semi.coupling_[otda_semi.cost_ == otda_semi.limit_max])
+ mass_semi = otda_semi.coupling_[otda_semi.cost_ == otda_semi.limit_max]
+
+ # we need to use a small tolerance here, otherwise the test breaks
+ assert_allclose(mass_semi, np.zeros_like(mass_semi),
+ rtol=1e-2, atol=1e-2)
+
def test_mapping_transport_class():
"""test_mapping_transport
@@ -300,47 +338,51 @@ def test_mapping_transport_class():
##########################################################################
# check computation and dimensions if bias == False
- clf = ot.da.MappingTransport(kernel="linear", bias=False)
- clf.fit(Xs=Xs, Xt=Xt)
- assert hasattr(clf, "coupling_")
- assert hasattr(clf, "mapping_")
- assert hasattr(clf, "log_")
+ otda = ot.da.MappingTransport(kernel="linear", bias=False)
+ otda.fit(Xs=Xs, Xt=Xt)
+ assert hasattr(otda, "coupling_")
+ assert hasattr(otda, "mapping_")
+ assert hasattr(otda, "log_")
- assert_equal(clf.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))
- assert_equal(clf.mapping_.shape, ((Xs.shape[1], Xt.shape[1])))
+ assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))
+ assert_equal(otda.mapping_.shape, ((Xs.shape[1], Xt.shape[1])))
# test margin constraints
mu_s = unif(ns)
mu_t = unif(nt)
- assert_allclose(np.sum(clf.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
- assert_allclose(np.sum(clf.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)
+ assert_allclose(
+ np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
+ assert_allclose(
+ np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)
# test transform
- transp_Xs = clf.transform(Xs=Xs)
+ transp_Xs = otda.transform(Xs=Xs)
assert_equal(transp_Xs.shape, Xs.shape)
- transp_Xs_new = clf.transform(Xs_new)
+ transp_Xs_new = otda.transform(Xs_new)
# check that the oos method is working
assert_equal(transp_Xs_new.shape, Xs_new.shape)
# check computation and dimensions if bias == True
- clf = ot.da.MappingTransport(kernel="linear", bias=True)
- clf.fit(Xs=Xs, Xt=Xt)
- assert_equal(clf.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))
- assert_equal(clf.mapping_.shape, ((Xs.shape[1] + 1, Xt.shape[1])))
+ otda = ot.da.MappingTransport(kernel="linear", bias=True)
+ otda.fit(Xs=Xs, Xt=Xt)
+ assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))
+ assert_equal(otda.mapping_.shape, ((Xs.shape[1] + 1, Xt.shape[1])))
# test margin constraints
mu_s = unif(ns)
mu_t = unif(nt)
- assert_allclose(np.sum(clf.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
- assert_allclose(np.sum(clf.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)
+ assert_allclose(
+ np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
+ assert_allclose(
+ np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)
# test transform
- transp_Xs = clf.transform(Xs=Xs)
+ transp_Xs = otda.transform(Xs=Xs)
assert_equal(transp_Xs.shape, Xs.shape)
- transp_Xs_new = clf.transform(Xs_new)
+ transp_Xs_new = otda.transform(Xs_new)
# check that the oos method is working
assert_equal(transp_Xs_new.shape, Xs_new.shape)
@@ -350,52 +392,56 @@ def test_mapping_transport_class():
##########################################################################
# check computation and dimensions if bias == False
- clf = ot.da.MappingTransport(kernel="gaussian", bias=False)
- clf.fit(Xs=Xs, Xt=Xt)
+ otda = ot.da.MappingTransport(kernel="gaussian", bias=False)
+ otda.fit(Xs=Xs, Xt=Xt)
- assert_equal(clf.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))
- assert_equal(clf.mapping_.shape, ((Xs.shape[0], Xt.shape[1])))
+ assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))
+ assert_equal(otda.mapping_.shape, ((Xs.shape[0], Xt.shape[1])))
# test margin constraints
mu_s = unif(ns)
mu_t = unif(nt)
- assert_allclose(np.sum(clf.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
- assert_allclose(np.sum(clf.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)
+ assert_allclose(
+ np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
+ assert_allclose(
+ np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)
# test transform
- transp_Xs = clf.transform(Xs=Xs)
+ transp_Xs = otda.transform(Xs=Xs)
assert_equal(transp_Xs.shape, Xs.shape)
- transp_Xs_new = clf.transform(Xs_new)
+ transp_Xs_new = otda.transform(Xs_new)
# check that the oos method is working
assert_equal(transp_Xs_new.shape, Xs_new.shape)
# check computation and dimensions if bias == True
- clf = ot.da.MappingTransport(kernel="gaussian", bias=True)
- clf.fit(Xs=Xs, Xt=Xt)
- assert_equal(clf.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))
- assert_equal(clf.mapping_.shape, ((Xs.shape[0] + 1, Xt.shape[1])))
+ otda = ot.da.MappingTransport(kernel="gaussian", bias=True)
+ otda.fit(Xs=Xs, Xt=Xt)
+ assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))
+ assert_equal(otda.mapping_.shape, ((Xs.shape[0] + 1, Xt.shape[1])))
# test margin constraints
mu_s = unif(ns)
mu_t = unif(nt)
- assert_allclose(np.sum(clf.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
- assert_allclose(np.sum(clf.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)
+ assert_allclose(
+ np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
+ assert_allclose(
+ np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)
# test transform
- transp_Xs = clf.transform(Xs=Xs)
+ transp_Xs = otda.transform(Xs=Xs)
assert_equal(transp_Xs.shape, Xs.shape)
- transp_Xs_new = clf.transform(Xs_new)
+ transp_Xs_new = otda.transform(Xs_new)
# check that the oos method is working
assert_equal(transp_Xs_new.shape, Xs_new.shape)
# check everything runs well with log=True
- clf = ot.da.MappingTransport(kernel="gaussian", log=True)
- clf.fit(Xs=Xs, Xt=Xt)
- assert len(clf.log_.keys()) != 0
+ otda = ot.da.MappingTransport(kernel="gaussian", log=True)
+ otda.fit(Xs=Xs, Xt=Xt)
+ assert len(otda.log_.keys()) != 0
def test_otda():
@@ -424,7 +470,8 @@ def test_otda():
da_entrop.interp()
da_entrop.predict(xs)
- np.testing.assert_allclose(a, np.sum(da_entrop.G, 1), rtol=1e-3, atol=1e-3)
+ np.testing.assert_allclose(
+ a, np.sum(da_entrop.G, 1), rtol=1e-3, atol=1e-3)
np.testing.assert_allclose(b, np.sum(da_entrop.G, 0), rtol=1e-3, atol=1e-3)
# non-convex Group lasso regularization
@@ -458,12 +505,3 @@ def test_otda():
da_emd = ot.da.OTDA_mapping_kernel() # init class
da_emd.fit(xs, xt, numItermax=10) # fit distributions
da_emd.predict(xs) # interpolation of source samples
-
-
-# if __name__ == "__main__":
-
-# test_sinkhorn_transport_class()
-# test_emd_transport_class()
-# test_sinkhorn_l1l2_transport_class()
-# test_sinkhorn_lpl1_transport_class()
-# test_mapping_transport_class()