summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--examples/plot_OTDA_mapping.py118
1 files changed, 64 insertions, 54 deletions
diff --git a/examples/plot_OTDA_mapping.py b/examples/plot_OTDA_mapping.py
index 78b57e7..a5c2b21 100644
--- a/examples/plot_OTDA_mapping.py
+++ b/examples/plot_OTDA_mapping.py
@@ -4,8 +4,9 @@
OT mapping estimation for domain adaptation [8]
===============================================
-[8] M. Perrot, N. Courty, R. Flamary, A. Habrard, "Mapping estimation for
- discrete optimal transport", Neural Information Processing Systems (NIPS), 2016.
+[8] M. Perrot, N. Courty, R. Flamary, A. Habrard,
+ "Mapping estimation for discrete optimal transport",
+ Neural Information Processing Systems (NIPS), 2016.
"""
import numpy as np
@@ -13,98 +14,107 @@ import matplotlib.pylab as pl
import ot
-
#%% dataset generation
-np.random.seed(0) # makes example reproducible
+np.random.seed(0) # makes example reproducible
-n=100 # nb samples in source and target datasets
-theta=2*np.pi/20
-nz=0.1
-xs,ys=ot.datasets.get_data_classif('gaussrot',n,nz=nz)
-xt,yt=ot.datasets.get_data_classif('gaussrot',n,theta=theta,nz=nz)
+n = 100 # nb samples in source and target datasets
+theta = 2 * np.pi / 20
+nz = 0.1
+xs, ys = ot.datasets.get_data_classif('gaussrot', n, nz=nz)
+xt, yt = ot.datasets.get_data_classif('gaussrot', n, theta=theta, nz=nz)
# one of the target mode changes its variance (no linear mapping)
-xt[yt==2]*=3
-xt=xt+4
+xt[yt == 2] *= 3
+xt = xt + 4
#%% plot samples
-pl.figure(1,(8,5))
+pl.figure(1, (6.4, 3))
pl.clf()
-
-pl.scatter(xs[:,0],xs[:,1],c=ys,marker='+',label='Source samples')
-pl.scatter(xt[:,0],xt[:,1],c=yt,marker='o',label='Target samples')
-
+pl.scatter(xs[:, 0], xs[:, 1], c=ys, marker='+', label='Source samples')
+pl.scatter(xt[:, 0], xt[:, 1], c=yt, marker='o', label='Target samples')
pl.legend(loc=0)
pl.title('Source and target distributions')
-
#%% OT linear mapping estimation
-eta=1e-8 # quadratic regularization for regression
-mu=1e0 # weight of the OT linear term
-bias=True # estimate a bias
+eta = 1e-8 # quadratic regularization for regression
+mu = 1e0 # weight of the OT linear term
+bias = True # estimate a bias
-ot_mapping=ot.da.OTDA_mapping_linear()
-ot_mapping.fit(xs,xt,mu=mu,eta=eta,bias=bias,numItermax = 20,verbose=True)
+ot_mapping = ot.da.OTDA_mapping_linear()
+ot_mapping.fit(xs, xt, mu=mu, eta=eta, bias=bias, numItermax=20, verbose=True)
-xst=ot_mapping.predict(xs) # use the estimated mapping
-xst0=ot_mapping.interp() # use barycentric mapping
+xst = ot_mapping.predict(xs) # use the estimated mapping
+xst0 = ot_mapping.interp() # use barycentric mapping
-pl.figure(2,(10,7))
+pl.figure(2)
pl.clf()
-pl.subplot(2,2,1)
-pl.scatter(xt[:,0],xt[:,1],c=yt,marker='o',label='Target samples',alpha=.3)
-pl.scatter(xst0[:,0],xst0[:,1],c=ys,marker='+',label='barycentric mapping')
+pl.subplot(2, 2, 1)
+pl.scatter(xt[:, 0], xt[:, 1], c=yt, marker='o',
+ label='Target samples', alpha=.3)
+pl.scatter(xst0[:, 0], xst0[:, 1], c=ys,
+ marker='+', label='barycentric mapping')
pl.title("barycentric mapping")
-pl.subplot(2,2,2)
-pl.scatter(xt[:,0],xt[:,1],c=yt,marker='o',label='Target samples',alpha=.3)
-pl.scatter(xst[:,0],xst[:,1],c=ys,marker='+',label='Learned mapping')
+pl.subplot(2, 2, 2)
+pl.scatter(xt[:, 0], xt[:, 1], c=yt, marker='o',
+ label='Target samples', alpha=.3)
+pl.scatter(xst[:, 0], xst[:, 1], c=ys, marker='+', label='Learned mapping')
pl.title("Learned mapping")
-
-
+pl.tight_layout()
#%% Kernel mapping estimation
-eta=1e-5 # quadratic regularization for regression
-mu=1e-1 # weight of the OT linear term
-bias=True # estimate a bias
-sigma=1 # sigma bandwidth fot gaussian kernel
+eta = 1e-5 # quadratic regularization for regression
+mu = 1e-1 # weight of the OT linear term
+bias = True # estimate a bias
+sigma = 1 # sigma bandwidth fot gaussian kernel
-ot_mapping_kernel=ot.da.OTDA_mapping_kernel()
-ot_mapping_kernel.fit(xs,xt,mu=mu,eta=eta,sigma=sigma,bias=bias,numItermax = 10,verbose=True)
+ot_mapping_kernel = ot.da.OTDA_mapping_kernel()
+ot_mapping_kernel.fit(
+ xs, xt, mu=mu, eta=eta, sigma=sigma, bias=bias, numItermax=10, verbose=True)
-xst_kernel=ot_mapping_kernel.predict(xs) # use the estimated mapping
-xst0_kernel=ot_mapping_kernel.interp() # use barycentric mapping
+xst_kernel = ot_mapping_kernel.predict(xs) # use the estimated mapping
+xst0_kernel = ot_mapping_kernel.interp() # use barycentric mapping
#%% Plotting the mapped samples
-pl.figure(2,(10,7))
+pl.figure(2)
pl.clf()
-pl.subplot(2,2,1)
-pl.scatter(xt[:,0],xt[:,1],c=yt,marker='o',label='Target samples',alpha=.2)
-pl.scatter(xst0[:,0],xst0[:,1],c=ys,marker='+',label='Mapped source samples')
+pl.subplot(2, 2, 1)
+pl.scatter(xt[:, 0], xt[:, 1], c=yt, marker='o',
+ label='Target samples', alpha=.2)
+pl.scatter(xst0[:, 0], xst0[:, 1], c=ys, marker='+',
+ label='Mapped source samples')
pl.title("Bary. mapping (linear)")
pl.legend(loc=0)
-pl.subplot(2,2,2)
-pl.scatter(xt[:,0],xt[:,1],c=yt,marker='o',label='Target samples',alpha=.2)
-pl.scatter(xst[:,0],xst[:,1],c=ys,marker='+',label='Learned mapping')
+pl.subplot(2, 2, 2)
+pl.scatter(xt[:, 0], xt[:, 1], c=yt, marker='o',
+ label='Target samples', alpha=.2)
+pl.scatter(xst[:, 0], xst[:, 1], c=ys, marker='+', label='Learned mapping')
pl.title("Estim. mapping (linear)")
-pl.subplot(2,2,3)
-pl.scatter(xt[:,0],xt[:,1],c=yt,marker='o',label='Target samples',alpha=.2)
-pl.scatter(xst0_kernel[:,0],xst0_kernel[:,1],c=ys,marker='+',label='barycentric mapping')
+pl.subplot(2, 2, 3)
+pl.scatter(xt[:, 0], xt[:, 1], c=yt, marker='o',
+ label='Target samples', alpha=.2)
+pl.scatter(xst0_kernel[:, 0], xst0_kernel[:, 1], c=ys,
+ marker='+', label='barycentric mapping')
pl.title("Bary. mapping (kernel)")
-pl.subplot(2,2,4)
-pl.scatter(xt[:,0],xt[:,1],c=yt,marker='o',label='Target samples',alpha=.2)
-pl.scatter(xst_kernel[:,0],xst_kernel[:,1],c=ys,marker='+',label='Learned mapping')
+pl.subplot(2, 2, 4)
+pl.scatter(xt[:, 0], xt[:, 1], c=yt, marker='o',
+ label='Target samples', alpha=.2)
+pl.scatter(xst_kernel[:, 0], xst_kernel[:, 1], c=ys,
+ marker='+', label='Learned mapping')
pl.title("Estim. mapping (kernel)")
+pl.tight_layout()
+
+pl.show()