summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--examples/plot_otda_laplacian.py127
-rw-r--r--ot/da.py257
-rw-r--r--ot/utils.py6
-rw-r--r--test/test_da.py64
4 files changed, 453 insertions, 1 deletions
diff --git a/examples/plot_otda_laplacian.py b/examples/plot_otda_laplacian.py
new file mode 100644
index 0000000..67c8f67
--- /dev/null
+++ b/examples/plot_otda_laplacian.py
@@ -0,0 +1,127 @@
+# -*- coding: utf-8 -*-
+"""
+======================================================
+OT with Laplacian regularization for domain adaptation
+======================================================
+
+This example introduces a domain adaptation in a 2D setting and OTDA
+approach with Laplacian regularization.
+
+"""
+
+# Authors: Ievgen Redko <ievgen.redko@univ-st-etienne.fr>
+
+# License: MIT License
+
+import matplotlib.pylab as pl
+import ot
+
+##############################################################################
+# Generate data
+# -------------
+
+n_source_samples = 150
+n_target_samples = 150
+
+Xs, ys = ot.datasets.make_data_classif('3gauss', n_source_samples)
+Xt, yt = ot.datasets.make_data_classif('3gauss2', n_target_samples)
+
+
+##############################################################################
+# Instantiate the different transport algorithms and fit them
+# -----------------------------------------------------------
+
+# EMD Transport
+ot_emd = ot.da.EMDTransport()
+ot_emd.fit(Xs=Xs, Xt=Xt)
+
+# Sinkhorn Transport
+ot_sinkhorn = ot.da.SinkhornTransport(reg_e=.01)
+ot_sinkhorn.fit(Xs=Xs, Xt=Xt)
+
+# EMD Transport with Laplacian regularization
+ot_emd_laplace = ot.da.EMDLaplaceTransport(reg_lap=100, reg_src=1)
+ot_emd_laplace.fit(Xs=Xs, Xt=Xt)
+
+# transport source samples onto target samples
+transp_Xs_emd = ot_emd.transform(Xs=Xs)
+transp_Xs_sinkhorn = ot_sinkhorn.transform(Xs=Xs)
+transp_Xs_emd_laplace = ot_emd_laplace.transform(Xs=Xs)
+
+##############################################################################
+# Fig 1 : plots source and target samples
+# ---------------------------------------
+
+pl.figure(1, figsize=(10, 5))
+pl.subplot(1, 2, 1)
+pl.scatter(Xs[:, 0], Xs[:, 1], c=ys, marker='+', label='Source samples')
+pl.xticks([])
+pl.yticks([])
+pl.legend(loc=0)
+pl.title('Source samples')
+
+pl.subplot(1, 2, 2)
+pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', label='Target samples')
+pl.xticks([])
+pl.yticks([])
+pl.legend(loc=0)
+pl.title('Target samples')
+pl.tight_layout()
+
+
+##############################################################################
+# Fig 2 : plot optimal couplings and transported samples
+# ------------------------------------------------------
+
+param_img = {'interpolation': 'nearest'}
+
+pl.figure(2, figsize=(15, 8))
+pl.subplot(2, 3, 1)
+pl.imshow(ot_emd.coupling_, **param_img)
+pl.xticks([])
+pl.yticks([])
+pl.title('Optimal coupling\nEMDTransport')
+
+pl.figure(2, figsize=(15, 8))
+pl.subplot(2, 3, 2)
+pl.imshow(ot_sinkhorn.coupling_, **param_img)
+pl.xticks([])
+pl.yticks([])
+pl.title('Optimal coupling\nSinkhornTransport')
+
+pl.subplot(2, 3, 3)
+pl.imshow(ot_emd_laplace.coupling_, **param_img)
+pl.xticks([])
+pl.yticks([])
+pl.title('Optimal coupling\nEMDLaplaceTransport')
+
+pl.subplot(2, 3, 4)
+pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o',
+ label='Target samples', alpha=0.3)
+pl.scatter(transp_Xs_emd[:, 0], transp_Xs_emd[:, 1], c=ys,
+ marker='+', label='Transp samples', s=30)
+pl.xticks([])
+pl.yticks([])
+pl.title('Transported samples\nEmdTransport')
+pl.legend(loc="lower left")
+
+pl.subplot(2, 3, 5)
+pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o',
+ label='Target samples', alpha=0.3)
+pl.scatter(transp_Xs_sinkhorn[:, 0], transp_Xs_sinkhorn[:, 1], c=ys,
+ marker='+', label='Transp samples', s=30)
+pl.xticks([])
+pl.yticks([])
+pl.title('Transported samples\nSinkhornTransport')
+
+pl.subplot(2, 3, 6)
+pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o',
+ label='Target samples', alpha=0.3)
+pl.scatter(transp_Xs_emd_laplace[:, 0], transp_Xs_emd_laplace[:, 1], c=ys,
+ marker='+', label='Transp samples', s=30)
+pl.xticks([])
+pl.yticks([])
+pl.title('Transported samples\nEMDLaplaceTransport')
+pl.tight_layout()
+
+pl.show()
diff --git a/ot/da.py b/ot/da.py
index 30e5a61..8e26e31 100644
--- a/ot/da.py
+++ b/ot/da.py
@@ -16,7 +16,7 @@ import scipy.linalg as linalg
from .bregman import sinkhorn, jcpot_barycenter
from .lp import emd
-from .utils import unif, dist, kernel, cost_normalization, label_normalization
+from .utils import unif, dist, kernel, cost_normalization, label_normalization, laplacian, dots
from .utils import check_params, BaseEstimator
from .unbalanced import sinkhorn_unbalanced
from .optim import cg
@@ -748,6 +748,139 @@ def OT_mapping_linear(xs, xt, reg=1e-6, ws=None,
return A, b
+def emd_laplace(a, b, xs, xt, M, reg, eta, alpha,
+ numItermax, stopThr, numInnerItermax,
+ stopInnerThr, log=False, verbose=False, **kwargs):
+ r"""Solve the optimal transport problem (OT) with Laplacian regularization
+
+ .. math::
+ \gamma = arg\min_\gamma <\gamma,M>_F + eta\Omega_\alpha(\gamma)
+
+ s.t.\ \gamma 1 = a
+
+ \gamma^T 1= b
+
+ \gamma\geq 0
+
+ where:
+
+ - a and b are source and target weights (sum to 1)
+ - xs and xt are source and target samples
+ - M is the (ns,nt) metric cost matrix
+ - :math:`\Omega_\alpha` is the Laplacian regularization term
+ :math:`\Omega_\alpha = (1-\alpha)/n_s^2\sum_{i,j}S^s_{i,j}\|T(\mathbf{x}^s_i)-T(\mathbf{x}^s_j)\|^2+\alpha/n_t^2\sum_{i,j}S^t_{i,j}^'\|T(\mathbf{x}^t_i)-T(\mathbf{x}^t_j)\|^2`
+ with :math:`S^s_{i,j}, S^t_{i,j}` denoting source and target similarity matrices and :math:`T(\cdot)` being a barycentric mapping
+
+ The algorithm used for solving the problem is the conditional gradient algorithm as proposed in [5].
+
+ Parameters
+ ----------
+ a : np.ndarray (ns,)
+ samples weights in the source domain
+ b : np.ndarray (nt,)
+ samples weights in the target domain
+ xs : np.ndarray (ns,d)
+ samples in the source domain
+ xt : np.ndarray (nt,d)
+ samples in the target domain
+ M : np.ndarray (ns,nt)
+ loss matrix
+ reg : string
+ Type of Laplacian regularization
+ eta : float
+ Regularization term for Laplacian regularization
+ alpha : float
+ Regularization term for source domain's importance in regularization
+ numItermax : int, optional
+ Max number of iterations
+ stopThr : float, optional
+ Stop threshold on error (inner emd solver) (>0)
+ numInnerItermax : int, optional
+ Max number of iterations (inner CG solver)
+ stopInnerThr : float, optional
+ Stop threshold on error (inner CG solver) (>0)
+ verbose : bool, optional
+ Print information along iterations
+ log : bool, optional
+ record log if True
+ kwargs : dict
+ Dictionary with attributes 'sim' ('knn' or 'gauss') and
+ 'param' (int, float or None) for similarity type and its parameter to be used.
+ If 'param' is None, it is computed as mean pairwise Euclidean distance over the data set
+ or set to 3 when sim is 'gauss' or 'knn', respectively.
+
+ Returns
+ -------
+ gamma : (ns x nt) ndarray
+ Optimal transportation matrix for the given parameters
+ log : dict
+ log dictionary return only if log==True in parameters
+
+
+ References
+ ----------
+
+ .. [5] N. Courty; R. Flamary; D. Tuia; A. Rakotomamonjy,
+ "Optimal Transport for Domain Adaptation," in IEEE
+ Transactions on Pattern Analysis and Machine Intelligence ,
+ vol.PP, no.99, pp.1-1
+ .. [28] R. Flamary, N. Courty, D. Tuia, A. Rakotomamonjy,
+ "Optimal transport with Laplacian regularization: Applications to domain adaptation and shape matching,"
+ in NIPS Workshop on Optimal Transport and Machine Learning OTML, 2014.
+
+ See Also
+ --------
+ ot.lp.emd : Unregularized OT
+ ot.optim.cg : General regularized OT
+
+ """
+ if not isinstance(kwargs['param'], (int, float, type(None))):
+ raise ValueError(
+ 'Similarity parameter should be an int or a float. Got {type} instead.'.format(type=type(kwargs['param'])))
+
+ if kwargs['sim'] == 'gauss':
+ if kwargs['param'] is None:
+ kwargs['param'] = 1 / (2 * (np.mean(dist(xs, xs, 'sqeuclidean')) ** 2))
+ sS = kernel(xs, xs, method=kwargs['sim'], sigma=kwargs['param'])
+ sT = kernel(xt, xt, method=kwargs['sim'], sigma=kwargs['param'])
+
+ elif kwargs['sim'] == 'knn':
+ if kwargs['param'] is None:
+ kwargs['param'] = 3
+
+ from sklearn.neighbors import kneighbors_graph
+
+ sS = kneighbors_graph(X=xs, n_neighbors=int(kwargs['param'])).toarray()
+ sS = (sS + sS.T) / 2
+ sT = kneighbors_graph(xt, n_neighbors=int(kwargs['param'])).toarray()
+ sT = (sT + sT.T) / 2
+ else:
+ raise ValueError('Unknown similarity type {sim}. Currently supported similarity types are "knn" and "gauss".'.format(sim=kwargs['sim']))
+
+ lS = laplacian(sS)
+ lT = laplacian(sT)
+
+ def f(G):
+ return alpha * np.trace(np.dot(xt.T, np.dot(G.T, np.dot(lS, np.dot(G, xt))))) \
+ + (1 - alpha) * np.trace(np.dot(xs.T, np.dot(G, np.dot(lT, np.dot(G.T, xs)))))
+
+ ls2 = lS + lS.T
+ lt2 = lT + lT.T
+ xt2 = np.dot(xt, xt.T)
+
+ if reg == 'disp':
+ Cs = -eta * alpha / xs.shape[0] * dots(ls2, xs, xt.T)
+ Ct = -eta * (1 - alpha) / xt.shape[0] * dots(xs, xt.T, lt2)
+ M = M + Cs + Ct
+
+ def df(G):
+ return alpha * np.dot(ls2, np.dot(G, xt2))\
+ + (1 - alpha) * np.dot(xs, np.dot(xs.T, np.dot(G, lt2)))
+
+ return cg(a, b, M, reg=eta, f=f, df=df, G0=None, numItermax=numItermax, numItermaxEmd=numInnerItermax,
+ stopThr=stopThr, stopThr2=stopInnerThr, verbose=verbose, log=log)
+
+
def distribution_estimation_uniform(X):
"""estimates a uniform distribution from an array of samples X
@@ -1576,6 +1709,128 @@ class SinkhornLpl1Transport(BaseTransport):
return self
+class EMDLaplaceTransport(BaseTransport):
+
+ """Domain Adapatation OT method based on Earth Mover's Distance with Laplacian regularization
+
+ Parameters
+ ----------
+ reg_type : string optional (default='pos')
+ Type of the regularization term: 'pos' and 'disp' for
+ regularization term defined in [2] and [6], respectively.
+ reg_lap : float, optional (default=1)
+ Laplacian regularization parameter
+ reg_src : float, optional (default=0.5)
+ Source relative importance in regularization
+ metric : string, optional (default="sqeuclidean")
+ The ground metric for the Wasserstein problem
+ norm : string, optional (default=None)
+ If given, normalize the ground metric to avoid numerical errors that
+ can occur with large metric values.
+ similarity : string, optional (default="knn")
+ The similarity to use either knn or gaussian
+ similarity_param : int or float, optional (default=3)
+ Parameter for the similarity: number of nearest neighbors or bandwidth
+ if similarity="knn" or "gaussian", respectively.
+ max_iter : int, optional (default=100)
+ Max number of BCD iterations
+ tol : float, optional (default=1e-5)
+ Stop threshold on relative loss decrease (>0)
+ max_inner_iter : int, optional (default=10)
+ Max number of iterations (inner CG solver)
+ inner_tol : float, optional (default=1e-6)
+ Stop threshold on error (inner CG solver) (>0)
+ log : int, optional (default=False)
+ Controls the logs of the optimization algorithm
+ distribution_estimation : callable, optional (defaults to the uniform)
+ The kind of distribution estimation to employ
+ out_of_sample_map : string, optional (default="ferradans")
+ The kind of out of sample mapping to apply to transport samples
+ from a domain into another one. Currently the only possible option is
+ "ferradans" which uses the method proposed in [6].
+
+ Attributes
+ ----------
+ coupling_ : array-like, shape (n_source_samples, n_target_samples)
+ The optimal coupling
+
+ References
+ ----------
+ .. [1] N. Courty; R. Flamary; D. Tuia; A. Rakotomamonjy,
+ "Optimal Transport for Domain Adaptation," in IEEE Transactions
+ on Pattern Analysis and Machine Intelligence , vol.PP, no.99, pp.1-1
+ .. [2] R. Flamary, N. Courty, D. Tuia, A. Rakotomamonjy,
+ "Optimal transport with Laplacian regularization: Applications to domain adaptation and shape matching,"
+ in NIPS Workshop on Optimal Transport and Machine Learning OTML, 2014.
+ """
+
+ def __init__(self, reg_type='pos', reg_lap=1., reg_src=1., alpha=0.5,
+ metric="sqeuclidean", norm=None, similarity="knn", similarity_param=None, max_iter=100, tol=1e-9,
+ max_inner_iter=100000, inner_tol=1e-9, log=False, verbose=False,
+ distribution_estimation=distribution_estimation_uniform,
+ out_of_sample_map='ferradans'):
+ self.reg = reg_type
+ self.reg_lap = reg_lap
+ self.reg_src = reg_src
+ self.alpha = alpha
+ self.metric = metric
+ self.norm = norm
+ self.similarity = similarity
+ self.sim_param = similarity_param
+ self.max_iter = max_iter
+ self.tol = tol
+ self.max_inner_iter = max_inner_iter
+ self.inner_tol = inner_tol
+ self.log = log
+ self.verbose = verbose
+ self.distribution_estimation = distribution_estimation
+ self.out_of_sample_map = out_of_sample_map
+
+ def fit(self, Xs, ys=None, Xt=None, yt=None):
+ """Build a coupling matrix from source and target sets of samples
+ (Xs, ys) and (Xt, yt)
+
+ Parameters
+ ----------
+ Xs : array-like, shape (n_source_samples, n_features)
+ The training input samples.
+ ys : array-like, shape (n_source_samples,)
+ The class labels
+ Xt : array-like, shape (n_target_samples, n_features)
+ The training input samples.
+ yt : array-like, shape (n_target_samples,)
+ The class labels. If some target samples are unlabeled, fill the
+ yt's elements with -1.
+
+ Warning: Note that, due to this convention -1 cannot be used as a
+ class label
+
+ Returns
+ -------
+ self : object
+ Returns self.
+ """
+
+ super(EMDLaplaceTransport, self).fit(Xs, ys, Xt, yt)
+
+ kwargs = dict()
+ kwargs["sim"] = self.similarity
+ kwargs["param"] = self.sim_param
+
+ returned_ = emd_laplace(a=self.mu_s, b=self.mu_t, xs=self.xs_,
+ xt=self.xt_, M=self.cost_, reg=self.reg, eta=self.reg_lap, alpha=self.reg_src,
+ numItermax=self.max_iter, stopThr=self.tol, numInnerItermax=self.max_inner_iter,
+ stopInnerThr=self.inner_tol, log=self.log, verbose=self.verbose, **kwargs)
+
+ # coupling estimation
+ if self.log:
+ self.coupling_, self.log_ = returned_
+ else:
+ self.coupling_ = returned_
+ self.log_ = dict()
+ return self
+
+
class SinkhornL1l2Transport(BaseTransport):
"""Domain Adapatation OT method based on sinkhorn algorithm +
diff --git a/ot/utils.py b/ot/utils.py
index c154f99..f9911a1 100644
--- a/ot/utils.py
+++ b/ot/utils.py
@@ -49,6 +49,12 @@ def kernel(x1, x2, method='gaussian', sigma=1, **kwargs):
return K
+def laplacian(x):
+ """Compute Laplacian matrix"""
+ L = np.diag(np.sum(x, axis=0)) - x
+ return L
+
+
def unif(n):
""" return a uniform histogram of length n (simplex)
diff --git a/test/test_da.py b/test/test_da.py
index 7d0fdda..3b28119 100644
--- a/test/test_da.py
+++ b/test/test_da.py
@@ -689,3 +689,67 @@ def test_jcpot_barycenter():
numItermax=10000, stopThr=1e-9, verbose=False, log=False)
np.testing.assert_allclose(prop, [1 - pt, pt], rtol=1e-3, atol=1e-3)
+
+
+def test_emd_laplace_class():
+ """test_emd_laplace_transport
+ """
+ ns = 150
+ nt = 200
+
+ Xs, ys = make_data_classif('3gauss', ns)
+ Xt, yt = make_data_classif('3gauss2', nt)
+
+ otda = ot.da.EMDLaplaceTransport(reg_lap=0.01, max_iter=1000, tol=1e-9, verbose=False, log=True)
+
+ # test its computed
+ otda.fit(Xs=Xs, ys=ys, Xt=Xt)
+
+ assert hasattr(otda, "coupling_")
+ assert hasattr(otda, "log_")
+
+ # test dimensions of coupling
+ assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))
+
+ # test all margin constraints
+ mu_s = unif(ns)
+ mu_t = unif(nt)
+
+ assert_allclose(
+ np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
+ assert_allclose(
+ np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)
+
+ # test transform
+ transp_Xs = otda.transform(Xs=Xs)
+ [assert_equal(x.shape, y.shape) for x, y in zip(transp_Xs, Xs)]
+
+ Xs_new, _ = make_data_classif('3gauss', ns + 1)
+ transp_Xs_new = otda.transform(Xs_new)
+
+ # check that the oos method is working
+ assert_equal(transp_Xs_new.shape, Xs_new.shape)
+
+ # test inverse transform
+ transp_Xt = otda.inverse_transform(Xt=Xt)
+ assert_equal(transp_Xt.shape, Xt.shape)
+
+ Xt_new, _ = make_data_classif('3gauss2', nt + 1)
+ transp_Xt_new = otda.inverse_transform(Xt=Xt_new)
+
+ # check that the oos method is working
+ assert_equal(transp_Xt_new.shape, Xt_new.shape)
+
+ # test fit_transform
+ transp_Xs = otda.fit_transform(Xs=Xs, Xt=Xt)
+ assert_equal(transp_Xs.shape, Xs.shape)
+
+ # check label propagation
+ transp_yt = otda.transform_labels(ys)
+ assert_equal(transp_yt.shape[0], yt.shape[0])
+ assert_equal(transp_yt.shape[1], len(np.unique(ys)))
+
+ # check inverse label propagation
+ transp_ys = otda.inverse_transform_labels(yt)
+ assert_equal(transp_ys.shape[0], ys.shape[0])
+ assert_equal(transp_ys.shape[1], len(np.unique(yt)))