summaryrefslogtreecommitdiff
path: root/docs/source/auto_examples/plot_OT_L1_vs_L2.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'docs/source/auto_examples/plot_OT_L1_vs_L2.ipynb')
-rw-r--r--docs/source/auto_examples/plot_OT_L1_vs_L2.ipynb68
1 files changed, 34 insertions, 34 deletions
diff --git a/docs/source/auto_examples/plot_OT_L1_vs_L2.ipynb b/docs/source/auto_examples/plot_OT_L1_vs_L2.ipynb
index aea1b3d..125d720 100644
--- a/docs/source/auto_examples/plot_OT_L1_vs_L2.ipynb
+++ b/docs/source/auto_examples/plot_OT_L1_vs_L2.ipynb
@@ -1,6 +1,7 @@
{
"cells": [
{
+ "cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
@@ -8,17 +9,17 @@
"outputs": [],
"source": [
"%matplotlib inline"
- ],
- "cell_type": "code"
+ ]
},
{
+ "cell_type": "markdown",
"metadata": {},
"source": [
"\n# 2D Optimal transport for different metrics\n\n\n2D OT on empirical distributio with different gound metric.\n\nStole the figure idea from Fig. 1 and 2 in\nhttps://arxiv.org/pdf/1706.07650.pdf\n\n\n\n"
- ],
- "cell_type": "markdown"
+ ]
},
{
+ "cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
@@ -26,35 +27,35 @@
"outputs": [],
"source": [
"# Author: Remi Flamary <remi.flamary@unice.fr>\n#\n# License: MIT License\n\nimport numpy as np\nimport matplotlib.pylab as pl\nimport ot\nimport ot.plot"
- ],
- "cell_type": "code"
+ ]
},
{
+ "cell_type": "markdown",
"metadata": {},
"source": [
"Dataset 1 : uniform sampling\n----------------------------\n\n"
- ],
- "cell_type": "markdown"
+ ]
},
{
+ "cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
- "n = 20 # nb samples\nxs = np.zeros((n, 2))\nxs[:, 0] = np.arange(n) + 1\nxs[:, 1] = (np.arange(n) + 1) * -0.001 # to make it strictly convex...\n\nxt = np.zeros((n, 2))\nxt[:, 1] = np.arange(n) + 1\n\na, b = ot.unif(n), ot.unif(n) # uniform distribution on samples\n\n# loss matrix\nM1 = ot.dist(xs, xt, metric='euclidean')\nM1 /= M1.max()\n\n# loss matrix\nM2 = ot.dist(xs, xt, metric='sqeuclidean')\nM2 /= M2.max()\n\n# loss matrix\nMp = np.sqrt(ot.dist(xs, xt, metric='euclidean'))\nMp /= Mp.max()\n\n# Data\npl.figure(1, figsize=(7, 3))\npl.clf()\npl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')\npl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples')\npl.axis('equal')\npl.title('Source and traget distributions')\n\n\n# Cost matrices\npl.figure(2, figsize=(7, 3))\n\npl.subplot(1, 3, 1)\npl.imshow(M1, interpolation='nearest')\npl.title('Euclidean cost')\n\npl.subplot(1, 3, 2)\npl.imshow(M2, interpolation='nearest')\npl.title('Squared Euclidean cost')\n\npl.subplot(1, 3, 3)\npl.imshow(Mp, interpolation='nearest')\npl.title('Sqrt Euclidean cost')\npl.tight_layout()"
- ],
- "cell_type": "code"
+ "n = 20 # nb samples\nxs = np.zeros((n, 2))\nxs[:, 0] = np.arange(n) + 1\nxs[:, 1] = (np.arange(n) + 1) * -0.001 # to make it strictly convex...\n\nxt = np.zeros((n, 2))\nxt[:, 1] = np.arange(n) + 1\n\na, b = ot.unif(n), ot.unif(n) # uniform distribution on samples\n\n# loss matrix\nM1 = ot.dist(xs, xt, metric='euclidean')\nM1 /= M1.max()\n\n# loss matrix\nM2 = ot.dist(xs, xt, metric='sqeuclidean')\nM2 /= M2.max()\n\n# loss matrix\nMp = np.sqrt(ot.dist(xs, xt, metric='euclidean'))\nMp /= Mp.max()\n\n# Data\npl.figure(1, figsize=(7, 3))\npl.clf()\npl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')\npl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples')\npl.axis('equal')\npl.title('Source and target distributions')\n\n\n# Cost matrices\npl.figure(2, figsize=(7, 3))\n\npl.subplot(1, 3, 1)\npl.imshow(M1, interpolation='nearest')\npl.title('Euclidean cost')\n\npl.subplot(1, 3, 2)\npl.imshow(M2, interpolation='nearest')\npl.title('Squared Euclidean cost')\n\npl.subplot(1, 3, 3)\npl.imshow(Mp, interpolation='nearest')\npl.title('Sqrt Euclidean cost')\npl.tight_layout()"
+ ]
},
{
+ "cell_type": "markdown",
"metadata": {},
"source": [
"Dataset 1 : Plot OT Matrices\n----------------------------\n\n"
- ],
- "cell_type": "markdown"
+ ]
},
{
+ "cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
@@ -62,17 +63,17 @@
"outputs": [],
"source": [
"#%% EMD\nG1 = ot.emd(a, b, M1)\nG2 = ot.emd(a, b, M2)\nGp = ot.emd(a, b, Mp)\n\n# OT matrices\npl.figure(3, figsize=(7, 3))\n\npl.subplot(1, 3, 1)\not.plot.plot2D_samples_mat(xs, xt, G1, c=[.5, .5, 1])\npl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')\npl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples')\npl.axis('equal')\n# pl.legend(loc=0)\npl.title('OT Euclidean')\n\npl.subplot(1, 3, 2)\not.plot.plot2D_samples_mat(xs, xt, G2, c=[.5, .5, 1])\npl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')\npl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples')\npl.axis('equal')\n# pl.legend(loc=0)\npl.title('OT squared Euclidean')\n\npl.subplot(1, 3, 3)\not.plot.plot2D_samples_mat(xs, xt, Gp, c=[.5, .5, 1])\npl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')\npl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples')\npl.axis('equal')\n# pl.legend(loc=0)\npl.title('OT sqrt Euclidean')\npl.tight_layout()\n\npl.show()"
- ],
- "cell_type": "code"
+ ]
},
{
+ "cell_type": "markdown",
"metadata": {},
"source": [
"Dataset 2 : Partial circle\n--------------------------\n\n"
- ],
- "cell_type": "markdown"
+ ]
},
{
+ "cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
@@ -80,17 +81,17 @@
"outputs": [],
"source": [
"n = 50 # nb samples\nxtot = np.zeros((n + 1, 2))\nxtot[:, 0] = np.cos(\n (np.arange(n + 1) + 1.0) * 0.9 / (n + 2) * 2 * np.pi)\nxtot[:, 1] = np.sin(\n (np.arange(n + 1) + 1.0) * 0.9 / (n + 2) * 2 * np.pi)\n\nxs = xtot[:n, :]\nxt = xtot[1:, :]\n\na, b = ot.unif(n), ot.unif(n) # uniform distribution on samples\n\n# loss matrix\nM1 = ot.dist(xs, xt, metric='euclidean')\nM1 /= M1.max()\n\n# loss matrix\nM2 = ot.dist(xs, xt, metric='sqeuclidean')\nM2 /= M2.max()\n\n# loss matrix\nMp = np.sqrt(ot.dist(xs, xt, metric='euclidean'))\nMp /= Mp.max()\n\n\n# Data\npl.figure(4, figsize=(7, 3))\npl.clf()\npl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')\npl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples')\npl.axis('equal')\npl.title('Source and traget distributions')\n\n\n# Cost matrices\npl.figure(5, figsize=(7, 3))\n\npl.subplot(1, 3, 1)\npl.imshow(M1, interpolation='nearest')\npl.title('Euclidean cost')\n\npl.subplot(1, 3, 2)\npl.imshow(M2, interpolation='nearest')\npl.title('Squared Euclidean cost')\n\npl.subplot(1, 3, 3)\npl.imshow(Mp, interpolation='nearest')\npl.title('Sqrt Euclidean cost')\npl.tight_layout()"
- ],
- "cell_type": "code"
+ ]
},
{
+ "cell_type": "markdown",
"metadata": {},
"source": [
"Dataset 2 : Plot OT Matrices\n-----------------------------\n\n"
- ],
- "cell_type": "markdown"
+ ]
},
{
+ "cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
@@ -98,29 +99,28 @@
"outputs": [],
"source": [
"#%% EMD\nG1 = ot.emd(a, b, M1)\nG2 = ot.emd(a, b, M2)\nGp = ot.emd(a, b, Mp)\n\n# OT matrices\npl.figure(6, figsize=(7, 3))\n\npl.subplot(1, 3, 1)\not.plot.plot2D_samples_mat(xs, xt, G1, c=[.5, .5, 1])\npl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')\npl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples')\npl.axis('equal')\n# pl.legend(loc=0)\npl.title('OT Euclidean')\n\npl.subplot(1, 3, 2)\not.plot.plot2D_samples_mat(xs, xt, G2, c=[.5, .5, 1])\npl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')\npl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples')\npl.axis('equal')\n# pl.legend(loc=0)\npl.title('OT squared Euclidean')\n\npl.subplot(1, 3, 3)\not.plot.plot2D_samples_mat(xs, xt, Gp, c=[.5, .5, 1])\npl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')\npl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples')\npl.axis('equal')\n# pl.legend(loc=0)\npl.title('OT sqrt Euclidean')\npl.tight_layout()\n\npl.show()"
- ],
- "cell_type": "code"
+ ]
}
],
"metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
"language_info": {
- "name": "python",
"codemirror_mode": {
"name": "ipython",
"version": 3
},
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
"nbconvert_exporter": "python",
- "version": "3.5.2",
"pygments_lexer": "ipython3",
- "file_extension": ".py",
- "mimetype": "text/x-python"
- },
- "kernelspec": {
- "display_name": "Python 3",
- "name": "python3",
- "language": "python"
+ "version": "3.6.5"
}
},
- "nbformat_minor": 0,
- "nbformat": 4
+ "nbformat": 4,
+ "nbformat_minor": 0
} \ No newline at end of file