summaryrefslogtreecommitdiff
path: root/docs/source/auto_examples/plot_UOT_barycenter_1D.py
diff options
context:
space:
mode:
Diffstat (limited to 'docs/source/auto_examples/plot_UOT_barycenter_1D.py')
-rw-r--r--docs/source/auto_examples/plot_UOT_barycenter_1D.py164
1 files changed, 0 insertions, 164 deletions
diff --git a/docs/source/auto_examples/plot_UOT_barycenter_1D.py b/docs/source/auto_examples/plot_UOT_barycenter_1D.py
deleted file mode 100644
index c8d9d3b..0000000
--- a/docs/source/auto_examples/plot_UOT_barycenter_1D.py
+++ /dev/null
@@ -1,164 +0,0 @@
-# -*- coding: utf-8 -*-
-"""
-===========================================================
-1D Wasserstein barycenter demo for Unbalanced distributions
-===========================================================
-
-This example illustrates the computation of regularized Wassersyein Barycenter
-as proposed in [10] for Unbalanced inputs.
-
-
-[10] Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2016). Scaling algorithms for unbalanced transport problems. arXiv preprint arXiv:1607.05816.
-
-"""
-
-# Author: Hicham Janati <hicham.janati@inria.fr>
-#
-# License: MIT License
-
-import numpy as np
-import matplotlib.pylab as pl
-import ot
-# necessary for 3d plot even if not used
-from mpl_toolkits.mplot3d import Axes3D # noqa
-from matplotlib.collections import PolyCollection
-
-##############################################################################
-# Generate data
-# -------------
-
-# parameters
-
-n = 100 # nb bins
-
-# bin positions
-x = np.arange(n, dtype=np.float64)
-
-# Gaussian distributions
-a1 = ot.datasets.make_1D_gauss(n, m=20, s=5) # m= mean, s= std
-a2 = ot.datasets.make_1D_gauss(n, m=60, s=8)
-
-# make unbalanced dists
-a2 *= 3.
-
-# creating matrix A containing all distributions
-A = np.vstack((a1, a2)).T
-n_distributions = A.shape[1]
-
-# loss matrix + normalization
-M = ot.utils.dist0(n)
-M /= M.max()
-
-##############################################################################
-# Plot data
-# ---------
-
-# plot the distributions
-
-pl.figure(1, figsize=(6.4, 3))
-for i in range(n_distributions):
- pl.plot(x, A[:, i])
-pl.title('Distributions')
-pl.tight_layout()
-
-##############################################################################
-# Barycenter computation
-# ----------------------
-
-# non weighted barycenter computation
-
-weight = 0.5 # 0<=weight<=1
-weights = np.array([1 - weight, weight])
-
-# l2bary
-bary_l2 = A.dot(weights)
-
-# wasserstein
-reg = 1e-3
-alpha = 1.
-
-bary_wass = ot.unbalanced.barycenter_unbalanced(A, M, reg, alpha, weights)
-
-pl.figure(2)
-pl.clf()
-pl.subplot(2, 1, 1)
-for i in range(n_distributions):
- pl.plot(x, A[:, i])
-pl.title('Distributions')
-
-pl.subplot(2, 1, 2)
-pl.plot(x, bary_l2, 'r', label='l2')
-pl.plot(x, bary_wass, 'g', label='Wasserstein')
-pl.legend()
-pl.title('Barycenters')
-pl.tight_layout()
-
-##############################################################################
-# Barycentric interpolation
-# -------------------------
-
-# barycenter interpolation
-
-n_weight = 11
-weight_list = np.linspace(0, 1, n_weight)
-
-
-B_l2 = np.zeros((n, n_weight))
-
-B_wass = np.copy(B_l2)
-
-for i in range(0, n_weight):
- weight = weight_list[i]
- weights = np.array([1 - weight, weight])
- B_l2[:, i] = A.dot(weights)
- B_wass[:, i] = ot.unbalanced.barycenter_unbalanced(A, M, reg, alpha, weights)
-
-
-# plot interpolation
-
-pl.figure(3)
-
-cmap = pl.cm.get_cmap('viridis')
-verts = []
-zs = weight_list
-for i, z in enumerate(zs):
- ys = B_l2[:, i]
- verts.append(list(zip(x, ys)))
-
-ax = pl.gcf().gca(projection='3d')
-
-poly = PolyCollection(verts, facecolors=[cmap(a) for a in weight_list])
-poly.set_alpha(0.7)
-ax.add_collection3d(poly, zs=zs, zdir='y')
-ax.set_xlabel('x')
-ax.set_xlim3d(0, n)
-ax.set_ylabel(r'$\alpha$')
-ax.set_ylim3d(0, 1)
-ax.set_zlabel('')
-ax.set_zlim3d(0, B_l2.max() * 1.01)
-pl.title('Barycenter interpolation with l2')
-pl.tight_layout()
-
-pl.figure(4)
-cmap = pl.cm.get_cmap('viridis')
-verts = []
-zs = weight_list
-for i, z in enumerate(zs):
- ys = B_wass[:, i]
- verts.append(list(zip(x, ys)))
-
-ax = pl.gcf().gca(projection='3d')
-
-poly = PolyCollection(verts, facecolors=[cmap(a) for a in weight_list])
-poly.set_alpha(0.7)
-ax.add_collection3d(poly, zs=zs, zdir='y')
-ax.set_xlabel('x')
-ax.set_xlim3d(0, n)
-ax.set_ylabel(r'$\alpha$')
-ax.set_ylim3d(0, 1)
-ax.set_zlabel('')
-ax.set_zlim3d(0, B_l2.max() * 1.01)
-pl.title('Barycenter interpolation with Wasserstein')
-pl.tight_layout()
-
-pl.show()