summaryrefslogtreecommitdiff
path: root/docs/source/auto_examples/plot_barycenter_fgw.py
diff options
context:
space:
mode:
Diffstat (limited to 'docs/source/auto_examples/plot_barycenter_fgw.py')
-rw-r--r--docs/source/auto_examples/plot_barycenter_fgw.py184
1 files changed, 0 insertions, 184 deletions
diff --git a/docs/source/auto_examples/plot_barycenter_fgw.py b/docs/source/auto_examples/plot_barycenter_fgw.py
deleted file mode 100644
index 77b0370..0000000
--- a/docs/source/auto_examples/plot_barycenter_fgw.py
+++ /dev/null
@@ -1,184 +0,0 @@
-# -*- coding: utf-8 -*-
-"""
-=================================
-Plot graphs' barycenter using FGW
-=================================
-
-This example illustrates the computation barycenter of labeled graphs using FGW
-
-Requires networkx >=2
-
-.. [18] Vayer Titouan, Chapel Laetitia, Flamary R{\'e}mi, Tavenard Romain
- and Courty Nicolas
- "Optimal Transport for structured data with application on graphs"
- International Conference on Machine Learning (ICML). 2019.
-
-"""
-
-# Author: Titouan Vayer <titouan.vayer@irisa.fr>
-#
-# License: MIT License
-
-#%% load libraries
-import numpy as np
-import matplotlib.pyplot as plt
-import networkx as nx
-import math
-from scipy.sparse.csgraph import shortest_path
-import matplotlib.colors as mcol
-from matplotlib import cm
-from ot.gromov import fgw_barycenters
-#%% Graph functions
-
-
-def find_thresh(C, inf=0.5, sup=3, step=10):
- """ Trick to find the adequate thresholds from where value of the C matrix are considered close enough to say that nodes are connected
- Tthe threshold is found by a linesearch between values "inf" and "sup" with "step" thresholds tested.
- The optimal threshold is the one which minimizes the reconstruction error between the shortest_path matrix coming from the thresholded adjency matrix
- and the original matrix.
- Parameters
- ----------
- C : ndarray, shape (n_nodes,n_nodes)
- The structure matrix to threshold
- inf : float
- The beginning of the linesearch
- sup : float
- The end of the linesearch
- step : integer
- Number of thresholds tested
- """
- dist = []
- search = np.linspace(inf, sup, step)
- for thresh in search:
- Cprime = sp_to_adjency(C, 0, thresh)
- SC = shortest_path(Cprime, method='D')
- SC[SC == float('inf')] = 100
- dist.append(np.linalg.norm(SC - C))
- return search[np.argmin(dist)], dist
-
-
-def sp_to_adjency(C, threshinf=0.2, threshsup=1.8):
- """ Thresholds the structure matrix in order to compute an adjency matrix.
- All values between threshinf and threshsup are considered representing connected nodes and set to 1. Else are set to 0
- Parameters
- ----------
- C : ndarray, shape (n_nodes,n_nodes)
- The structure matrix to threshold
- threshinf : float
- The minimum value of distance from which the new value is set to 1
- threshsup : float
- The maximum value of distance from which the new value is set to 1
- Returns
- -------
- C : ndarray, shape (n_nodes,n_nodes)
- The threshold matrix. Each element is in {0,1}
- """
- H = np.zeros_like(C)
- np.fill_diagonal(H, np.diagonal(C))
- C = C - H
- C = np.minimum(np.maximum(C, threshinf), threshsup)
- C[C == threshsup] = 0
- C[C != 0] = 1
-
- return C
-
-
-def build_noisy_circular_graph(N=20, mu=0, sigma=0.3, with_noise=False, structure_noise=False, p=None):
- """ Create a noisy circular graph
- """
- g = nx.Graph()
- g.add_nodes_from(list(range(N)))
- for i in range(N):
- noise = float(np.random.normal(mu, sigma, 1))
- if with_noise:
- g.add_node(i, attr_name=math.sin((2 * i * math.pi / N)) + noise)
- else:
- g.add_node(i, attr_name=math.sin(2 * i * math.pi / N))
- g.add_edge(i, i + 1)
- if structure_noise:
- randomint = np.random.randint(0, p)
- if randomint == 0:
- if i <= N - 3:
- g.add_edge(i, i + 2)
- if i == N - 2:
- g.add_edge(i, 0)
- if i == N - 1:
- g.add_edge(i, 1)
- g.add_edge(N, 0)
- noise = float(np.random.normal(mu, sigma, 1))
- if with_noise:
- g.add_node(N, attr_name=math.sin((2 * N * math.pi / N)) + noise)
- else:
- g.add_node(N, attr_name=math.sin(2 * N * math.pi / N))
- return g
-
-
-def graph_colors(nx_graph, vmin=0, vmax=7):
- cnorm = mcol.Normalize(vmin=vmin, vmax=vmax)
- cpick = cm.ScalarMappable(norm=cnorm, cmap='viridis')
- cpick.set_array([])
- val_map = {}
- for k, v in nx.get_node_attributes(nx_graph, 'attr_name').items():
- val_map[k] = cpick.to_rgba(v)
- colors = []
- for node in nx_graph.nodes():
- colors.append(val_map[node])
- return colors
-
-##############################################################################
-# Generate data
-# -------------
-
-#%% circular dataset
-# We build a dataset of noisy circular graphs.
-# Noise is added on the structures by random connections and on the features by gaussian noise.
-
-
-np.random.seed(30)
-X0 = []
-for k in range(9):
- X0.append(build_noisy_circular_graph(np.random.randint(15, 25), with_noise=True, structure_noise=True, p=3))
-
-##############################################################################
-# Plot data
-# ---------
-
-#%% Plot graphs
-
-plt.figure(figsize=(8, 10))
-for i in range(len(X0)):
- plt.subplot(3, 3, i + 1)
- g = X0[i]
- pos = nx.kamada_kawai_layout(g)
- nx.draw(g, pos=pos, node_color=graph_colors(g, vmin=-1, vmax=1), with_labels=False, node_size=100)
-plt.suptitle('Dataset of noisy graphs. Color indicates the label', fontsize=20)
-plt.show()
-
-##############################################################################
-# Barycenter computation
-# ----------------------
-
-#%% We compute the barycenter using FGW. Structure matrices are computed using the shortest_path distance in the graph
-# Features distances are the euclidean distances
-Cs = [shortest_path(nx.adjacency_matrix(x)) for x in X0]
-ps = [np.ones(len(x.nodes())) / len(x.nodes()) for x in X0]
-Ys = [np.array([v for (k, v) in nx.get_node_attributes(x, 'attr_name').items()]).reshape(-1, 1) for x in X0]
-lambdas = np.array([np.ones(len(Ys)) / len(Ys)]).ravel()
-sizebary = 15 # we choose a barycenter with 15 nodes
-
-A, C, log = fgw_barycenters(sizebary, Ys, Cs, ps, lambdas, alpha=0.95, log=True)
-
-##############################################################################
-# Plot Barycenter
-# -------------------------
-
-#%% Create the barycenter
-bary = nx.from_numpy_matrix(sp_to_adjency(C, threshinf=0, threshsup=find_thresh(C, sup=100, step=100)[0]))
-for i, v in enumerate(A.ravel()):
- bary.add_node(i, attr_name=v)
-
-#%%
-pos = nx.kamada_kawai_layout(bary)
-nx.draw(bary, pos=pos, node_color=graph_colors(bary, vmin=-1, vmax=1), with_labels=False)
-plt.suptitle('Barycenter', fontsize=20)
-plt.show()