summaryrefslogtreecommitdiff
path: root/docs/source/auto_examples/plot_barycenter_lp_vs_entropic.py
diff options
context:
space:
mode:
Diffstat (limited to 'docs/source/auto_examples/plot_barycenter_lp_vs_entropic.py')
-rw-r--r--docs/source/auto_examples/plot_barycenter_lp_vs_entropic.py281
1 files changed, 0 insertions, 281 deletions
diff --git a/docs/source/auto_examples/plot_barycenter_lp_vs_entropic.py b/docs/source/auto_examples/plot_barycenter_lp_vs_entropic.py
deleted file mode 100644
index b82765e..0000000
--- a/docs/source/auto_examples/plot_barycenter_lp_vs_entropic.py
+++ /dev/null
@@ -1,281 +0,0 @@
-# -*- coding: utf-8 -*-
-"""
-=================================================================================
-1D Wasserstein barycenter comparison between exact LP and entropic regularization
-=================================================================================
-
-This example illustrates the computation of regularized Wasserstein Barycenter
-as proposed in [3] and exact LP barycenters using standard LP solver.
-
-It reproduces approximately Figure 3.1 and 3.2 from the following paper:
-Cuturi, M., & Peyré, G. (2016). A smoothed dual approach for variational
-Wasserstein problems. SIAM Journal on Imaging Sciences, 9(1), 320-343.
-
-[3] Benamou, J. D., Carlier, G., Cuturi, M., Nenna, L., & Peyré, G. (2015).
-Iterative Bregman projections for regularized transportation problems
-SIAM Journal on Scientific Computing, 37(2), A1111-A1138.
-
-"""
-
-# Author: Remi Flamary <remi.flamary@unice.fr>
-#
-# License: MIT License
-
-import numpy as np
-import matplotlib.pylab as pl
-import ot
-# necessary for 3d plot even if not used
-from mpl_toolkits.mplot3d import Axes3D # noqa
-from matplotlib.collections import PolyCollection # noqa
-
-#import ot.lp.cvx as cvx
-
-##############################################################################
-# Gaussian Data
-# -------------
-
-#%% parameters
-
-problems = []
-
-n = 100 # nb bins
-
-# bin positions
-x = np.arange(n, dtype=np.float64)
-
-# Gaussian distributions
-# Gaussian distributions
-a1 = ot.datasets.make_1D_gauss(n, m=20, s=5) # m= mean, s= std
-a2 = ot.datasets.make_1D_gauss(n, m=60, s=8)
-
-# creating matrix A containing all distributions
-A = np.vstack((a1, a2)).T
-n_distributions = A.shape[1]
-
-# loss matrix + normalization
-M = ot.utils.dist0(n)
-M /= M.max()
-
-
-#%% plot the distributions
-
-pl.figure(1, figsize=(6.4, 3))
-for i in range(n_distributions):
- pl.plot(x, A[:, i])
-pl.title('Distributions')
-pl.tight_layout()
-
-#%% barycenter computation
-
-alpha = 0.5 # 0<=alpha<=1
-weights = np.array([1 - alpha, alpha])
-
-# l2bary
-bary_l2 = A.dot(weights)
-
-# wasserstein
-reg = 1e-3
-ot.tic()
-bary_wass = ot.bregman.barycenter(A, M, reg, weights)
-ot.toc()
-
-
-ot.tic()
-bary_wass2 = ot.lp.barycenter(A, M, weights, solver='interior-point', verbose=True)
-ot.toc()
-
-pl.figure(2)
-pl.clf()
-pl.subplot(2, 1, 1)
-for i in range(n_distributions):
- pl.plot(x, A[:, i])
-pl.title('Distributions')
-
-pl.subplot(2, 1, 2)
-pl.plot(x, bary_l2, 'r', label='l2')
-pl.plot(x, bary_wass, 'g', label='Reg Wasserstein')
-pl.plot(x, bary_wass2, 'b', label='LP Wasserstein')
-pl.legend()
-pl.title('Barycenters')
-pl.tight_layout()
-
-problems.append([A, [bary_l2, bary_wass, bary_wass2]])
-
-##############################################################################
-# Dirac Data
-# ----------
-
-#%% parameters
-
-a1 = 1.0 * (x > 10) * (x < 50)
-a2 = 1.0 * (x > 60) * (x < 80)
-
-a1 /= a1.sum()
-a2 /= a2.sum()
-
-# creating matrix A containing all distributions
-A = np.vstack((a1, a2)).T
-n_distributions = A.shape[1]
-
-# loss matrix + normalization
-M = ot.utils.dist0(n)
-M /= M.max()
-
-
-#%% plot the distributions
-
-pl.figure(1, figsize=(6.4, 3))
-for i in range(n_distributions):
- pl.plot(x, A[:, i])
-pl.title('Distributions')
-pl.tight_layout()
-
-
-#%% barycenter computation
-
-alpha = 0.5 # 0<=alpha<=1
-weights = np.array([1 - alpha, alpha])
-
-# l2bary
-bary_l2 = A.dot(weights)
-
-# wasserstein
-reg = 1e-3
-ot.tic()
-bary_wass = ot.bregman.barycenter(A, M, reg, weights)
-ot.toc()
-
-
-ot.tic()
-bary_wass2 = ot.lp.barycenter(A, M, weights, solver='interior-point', verbose=True)
-ot.toc()
-
-
-problems.append([A, [bary_l2, bary_wass, bary_wass2]])
-
-pl.figure(2)
-pl.clf()
-pl.subplot(2, 1, 1)
-for i in range(n_distributions):
- pl.plot(x, A[:, i])
-pl.title('Distributions')
-
-pl.subplot(2, 1, 2)
-pl.plot(x, bary_l2, 'r', label='l2')
-pl.plot(x, bary_wass, 'g', label='Reg Wasserstein')
-pl.plot(x, bary_wass2, 'b', label='LP Wasserstein')
-pl.legend()
-pl.title('Barycenters')
-pl.tight_layout()
-
-#%% parameters
-
-a1 = np.zeros(n)
-a2 = np.zeros(n)
-
-a1[10] = .25
-a1[20] = .5
-a1[30] = .25
-a2[80] = 1
-
-
-a1 /= a1.sum()
-a2 /= a2.sum()
-
-# creating matrix A containing all distributions
-A = np.vstack((a1, a2)).T
-n_distributions = A.shape[1]
-
-# loss matrix + normalization
-M = ot.utils.dist0(n)
-M /= M.max()
-
-
-#%% plot the distributions
-
-pl.figure(1, figsize=(6.4, 3))
-for i in range(n_distributions):
- pl.plot(x, A[:, i])
-pl.title('Distributions')
-pl.tight_layout()
-
-
-#%% barycenter computation
-
-alpha = 0.5 # 0<=alpha<=1
-weights = np.array([1 - alpha, alpha])
-
-# l2bary
-bary_l2 = A.dot(weights)
-
-# wasserstein
-reg = 1e-3
-ot.tic()
-bary_wass = ot.bregman.barycenter(A, M, reg, weights)
-ot.toc()
-
-
-ot.tic()
-bary_wass2 = ot.lp.barycenter(A, M, weights, solver='interior-point', verbose=True)
-ot.toc()
-
-
-problems.append([A, [bary_l2, bary_wass, bary_wass2]])
-
-pl.figure(2)
-pl.clf()
-pl.subplot(2, 1, 1)
-for i in range(n_distributions):
- pl.plot(x, A[:, i])
-pl.title('Distributions')
-
-pl.subplot(2, 1, 2)
-pl.plot(x, bary_l2, 'r', label='l2')
-pl.plot(x, bary_wass, 'g', label='Reg Wasserstein')
-pl.plot(x, bary_wass2, 'b', label='LP Wasserstein')
-pl.legend()
-pl.title('Barycenters')
-pl.tight_layout()
-
-
-##############################################################################
-# Final figure
-# ------------
-#
-
-#%% plot
-
-nbm = len(problems)
-nbm2 = (nbm // 2)
-
-
-pl.figure(2, (20, 6))
-pl.clf()
-
-for i in range(nbm):
-
- A = problems[i][0]
- bary_l2 = problems[i][1][0]
- bary_wass = problems[i][1][1]
- bary_wass2 = problems[i][1][2]
-
- pl.subplot(2, nbm, 1 + i)
- for j in range(n_distributions):
- pl.plot(x, A[:, j])
- if i == nbm2:
- pl.title('Distributions')
- pl.xticks(())
- pl.yticks(())
-
- pl.subplot(2, nbm, 1 + i + nbm)
-
- pl.plot(x, bary_l2, 'r', label='L2 (Euclidean)')
- pl.plot(x, bary_wass, 'g', label='Reg Wasserstein')
- pl.plot(x, bary_wass2, 'b', label='LP Wasserstein')
- if i == nbm - 1:
- pl.legend()
- if i == nbm2:
- pl.title('Barycenters')
-
- pl.xticks(())
- pl.yticks(())