summaryrefslogtreecommitdiff
path: root/docs/source/auto_examples/plot_otda_mapping.rst
diff options
context:
space:
mode:
Diffstat (limited to 'docs/source/auto_examples/plot_otda_mapping.rst')
-rw-r--r--docs/source/auto_examples/plot_otda_mapping.rst235
1 files changed, 235 insertions, 0 deletions
diff --git a/docs/source/auto_examples/plot_otda_mapping.rst b/docs/source/auto_examples/plot_otda_mapping.rst
new file mode 100644
index 0000000..1d95fc6
--- /dev/null
+++ b/docs/source/auto_examples/plot_otda_mapping.rst
@@ -0,0 +1,235 @@
+
+
+.. _sphx_glr_auto_examples_plot_otda_mapping.py:
+
+
+===========================================
+OT mapping estimation for domain adaptation
+===========================================
+
+This example presents how to use MappingTransport to estimate at the same
+time both the coupling transport and approximate the transport map with either
+a linear or a kernelized mapping as introduced in [8].
+
+[8] M. Perrot, N. Courty, R. Flamary, A. Habrard,
+ "Mapping estimation for discrete optimal transport",
+ Neural Information Processing Systems (NIPS), 2016.
+
+
+
+.. code-block:: python
+
+
+ # Authors: Remi Flamary <remi.flamary@unice.fr>
+ # Stanislas Chambon <stan.chambon@gmail.com>
+ #
+ # License: MIT License
+
+ import numpy as np
+ import matplotlib.pylab as pl
+ import ot
+
+
+
+
+
+
+
+
+Generate data
+-------------
+
+
+
+.. code-block:: python
+
+
+ n_source_samples = 100
+ n_target_samples = 100
+ theta = 2 * np.pi / 20
+ noise_level = 0.1
+
+ Xs, ys = ot.datasets.make_data_classif(
+ 'gaussrot', n_source_samples, nz=noise_level)
+ Xs_new, _ = ot.datasets.make_data_classif(
+ 'gaussrot', n_source_samples, nz=noise_level)
+ Xt, yt = ot.datasets.make_data_classif(
+ 'gaussrot', n_target_samples, theta=theta, nz=noise_level)
+
+ # one of the target mode changes its variance (no linear mapping)
+ Xt[yt == 2] *= 3
+ Xt = Xt + 4
+
+
+
+
+
+
+
+Plot data
+---------
+
+
+
+.. code-block:: python
+
+
+ pl.figure(1, (10, 5))
+ pl.clf()
+ pl.scatter(Xs[:, 0], Xs[:, 1], c=ys, marker='+', label='Source samples')
+ pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', label='Target samples')
+ pl.legend(loc=0)
+ pl.title('Source and target distributions')
+
+
+
+
+
+.. image:: /auto_examples/images/sphx_glr_plot_otda_mapping_001.png
+ :align: center
+
+
+
+
+Instantiate the different transport algorithms and fit them
+-----------------------------------------------------------
+
+
+
+.. code-block:: python
+
+
+ # MappingTransport with linear kernel
+ ot_mapping_linear = ot.da.MappingTransport(
+ kernel="linear", mu=1e0, eta=1e-8, bias=True,
+ max_iter=20, verbose=True)
+
+ ot_mapping_linear.fit(Xs=Xs, Xt=Xt)
+
+ # for original source samples, transform applies barycentric mapping
+ transp_Xs_linear = ot_mapping_linear.transform(Xs=Xs)
+
+ # for out of source samples, transform applies the linear mapping
+ transp_Xs_linear_new = ot_mapping_linear.transform(Xs=Xs_new)
+
+
+ # MappingTransport with gaussian kernel
+ ot_mapping_gaussian = ot.da.MappingTransport(
+ kernel="gaussian", eta=1e-5, mu=1e-1, bias=True, sigma=1,
+ max_iter=10, verbose=True)
+ ot_mapping_gaussian.fit(Xs=Xs, Xt=Xt)
+
+ # for original source samples, transform applies barycentric mapping
+ transp_Xs_gaussian = ot_mapping_gaussian.transform(Xs=Xs)
+
+ # for out of source samples, transform applies the gaussian mapping
+ transp_Xs_gaussian_new = ot_mapping_gaussian.transform(Xs=Xs_new)
+
+
+
+
+
+
+.. rst-class:: sphx-glr-script-out
+
+ Out::
+
+ It. |Loss |Delta loss
+ --------------------------------
+ 0|4.299275e+03|0.000000e+00
+ 1|4.290443e+03|-2.054271e-03
+ 2|4.290040e+03|-9.389994e-05
+ 3|4.289876e+03|-3.830707e-05
+ 4|4.289783e+03|-2.157428e-05
+ 5|4.289724e+03|-1.390941e-05
+ 6|4.289706e+03|-4.051054e-06
+ It. |Loss |Delta loss
+ --------------------------------
+ 0|4.326465e+02|0.000000e+00
+ 1|4.282533e+02|-1.015416e-02
+ 2|4.279473e+02|-7.145955e-04
+ 3|4.277941e+02|-3.580104e-04
+ 4|4.277069e+02|-2.039229e-04
+ 5|4.276462e+02|-1.418698e-04
+ 6|4.276011e+02|-1.054172e-04
+ 7|4.275663e+02|-8.145802e-05
+ 8|4.275405e+02|-6.028774e-05
+ 9|4.275191e+02|-5.005886e-05
+ 10|4.275019e+02|-4.021935e-05
+
+
+Plot transported samples
+------------------------
+
+
+
+.. code-block:: python
+
+
+ pl.figure(2)
+ pl.clf()
+ pl.subplot(2, 2, 1)
+ pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o',
+ label='Target samples', alpha=.2)
+ pl.scatter(transp_Xs_linear[:, 0], transp_Xs_linear[:, 1], c=ys, marker='+',
+ label='Mapped source samples')
+ pl.title("Bary. mapping (linear)")
+ pl.legend(loc=0)
+
+ pl.subplot(2, 2, 2)
+ pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o',
+ label='Target samples', alpha=.2)
+ pl.scatter(transp_Xs_linear_new[:, 0], transp_Xs_linear_new[:, 1],
+ c=ys, marker='+', label='Learned mapping')
+ pl.title("Estim. mapping (linear)")
+
+ pl.subplot(2, 2, 3)
+ pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o',
+ label='Target samples', alpha=.2)
+ pl.scatter(transp_Xs_gaussian[:, 0], transp_Xs_gaussian[:, 1], c=ys,
+ marker='+', label='barycentric mapping')
+ pl.title("Bary. mapping (kernel)")
+
+ pl.subplot(2, 2, 4)
+ pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o',
+ label='Target samples', alpha=.2)
+ pl.scatter(transp_Xs_gaussian_new[:, 0], transp_Xs_gaussian_new[:, 1], c=ys,
+ marker='+', label='Learned mapping')
+ pl.title("Estim. mapping (kernel)")
+ pl.tight_layout()
+
+ pl.show()
+
+
+
+.. image:: /auto_examples/images/sphx_glr_plot_otda_mapping_003.png
+ :align: center
+
+
+
+
+**Total running time of the script:** ( 0 minutes 0.795 seconds)
+
+
+
+.. only :: html
+
+ .. container:: sphx-glr-footer
+
+
+ .. container:: sphx-glr-download
+
+ :download:`Download Python source code: plot_otda_mapping.py <plot_otda_mapping.py>`
+
+
+
+ .. container:: sphx-glr-download
+
+ :download:`Download Jupyter notebook: plot_otda_mapping.ipynb <plot_otda_mapping.ipynb>`
+
+
+.. only:: html
+
+ .. rst-class:: sphx-glr-signature
+
+ `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.readthedocs.io>`_